form-a-Lagrangian-to-maximize-x-2-y-2-subject-to-the-constraint-2x-y-3- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 95924 by i jagooll last updated on 28/May/20 formaLagrangiantomaximizex2−y2subjecttotheconstraint2x+y=3? Commented by john santu last updated on 29/May/20 f(x,y,λ)=x2−y2+λ(2x+y−3)∂f∂x=2x+2λ=0⇒λ=−x∂f∂y=−2y+λ=0⇒λ=2y∂f∂λ=2x+y−3=0⇒−2λ+λ2=3−3λ=6⇒λ=−2⇒{x=2y=−1maxf(2,−1)=22−(−1)2=3 Answered by mr W last updated on 28/May/20 f(x,y)=x2−y2F(x,y,λ)=x2−y2+λ(2x+y−3)∂F∂x=2x+2λ=0⇒x=−λ∂F∂y=−2y+λ=0⇒y=λ2∂F∂λ=2x+y−3=0⇒−2λ+λ2−3=0⇒λ=−2⇒x=2,y=−1fmax=f(2,−1)=22−(−1)2=3orf(x)=x2−(3−2x)2dfdx=2x−2(3−2x)(−2)=0⇒x=2fmax=f(2)=22−(3−4)2=3 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-the-particular-solution-to-the-differential-equation-2y-5y-2y-0-subject-to-the-initial-conditions-y-0-2y-y-0-1-Next Next post: Question-30390 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.