Menu Close

From-a-point-A-on-the-circum-ference-of-a-circle-of-radius-r-a-perpendicular-AF-is-dropped-on-a-tangent-to-the-circle-at-P-Find-the-maximum-possible-area-of-APF-




Question Number 15736 by ajfour last updated on 13/Jun/17
From a point A on the circum-  ference of a circle of radius r, a  perpendicular AF  is dropped on  a tangent to the circle at P.  Find the  maximum possible   area of ΔAPF .
FromapointAonthecircumferenceofacircleofradiusr,aperpendicularAFisdroppedonatangenttothecircleatP.FindthemaximumpossibleareaofΔAPF.
Answered by mrW1 last updated on 13/Jun/17
let θ=∠AOP  O=center of circle  PF=rsin θ  AF=r−rcos θ  A_(ΔAPF) =(1/2)×rsin θ×(r−rcos θ)=(r^2 /2)sin θ(1−cos θ)  =(r^2 /2)f(θ)  with f(θ)=sin θ(1−cos θ)  (df/dθ)=cos θ(1−cos θ)+sin^2  θ=cos θ−2cos^2  θ+1=0  cos θ=((1±(√(1+8)))/4)=((1±3)/4)=1,−(1/2)  ⇒θ=0° (not what we need)  ⇒θ=120°  max.A_(ΔAPF) =(r^2 /2)×sin 120×(1−cos 120)  =(r^2 /2)×((√3)/2)×(1+(1/2))  =((3(√3)r^2 )/8)
letθ=AOPO=centerofcirclePF=rsinθAF=rrcosθAΔAPF=12×rsinθ×(rrcosθ)=r22sinθ(1cosθ)=r22f(θ)withf(θ)=sinθ(1cosθ)dfdθ=cosθ(1cosθ)+sin2θ=cosθ2cos2θ+1=0cosθ=1±1+84=1±34=1,12θ=0°(notwhatweneed)θ=120°max.AΔAPF=r22×sin120×(1cos120)=r22×32×(1+12)=33r28
Commented by mrW1 last updated on 13/Jun/17
Commented by ajfour last updated on 13/Jun/17
great sir, is there also a way  of geometry to arrive at the  result without having to  differentiate..
greatsir,istherealsoawayofgeometrytoarriveattheresultwithouthavingtodifferentiate..

Leave a Reply

Your email address will not be published. Required fields are marked *