Menu Close

From-a-point-on-the-circumcircle-of-an-equilateral-triangle-ABC-parallels-to-the-sides-BC-CA-and-AB-are-drawn-intersecting-the-sides-CA-AB-and-BC-at-the-points-M-N-P-respectively-Prove-that-the




Question Number 16877 by Tinkutara last updated on 27/Jun/17
From a point on the circumcircle of an  equilateral triangle ABC parallels to  the sides BC, CA and AB are drawn,  intersecting the sides CA, AB and BC  at the points M, N, P, respectively.  Prove that the points M, N and P are  collinear.
$$\mathrm{From}\:\mathrm{a}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{circumcircle}\:\mathrm{of}\:\mathrm{an} \\ $$$$\mathrm{equilateral}\:\mathrm{triangle}\:{ABC}\:\mathrm{parallels}\:\mathrm{to} \\ $$$$\mathrm{the}\:\mathrm{sides}\:{BC},\:{CA}\:\mathrm{and}\:{AB}\:\mathrm{are}\:\mathrm{drawn}, \\ $$$$\mathrm{intersecting}\:\mathrm{the}\:\mathrm{sides}\:{CA},\:{AB}\:\mathrm{and}\:{BC} \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{points}\:{M},\:{N},\:{P},\:\mathrm{respectively}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{points}\:{M},\:{N}\:\mathrm{and}\:{P}\:\mathrm{are} \\ $$$$\mathrm{collinear}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *