Question Number 104296 by Dwaipayan Shikari last updated on 20/Jul/20
$$ \\ $$$$ \\ $$$$\mathrm{FUN}\:\mathrm{TIME}\:\mathrm{AGAIN}! \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+\mathrm{5}+\mathrm{6}+\mathrm{7}+\mathrm{8}+\mathrm{9}+.. \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\left(\mathrm{2}+\mathrm{3}+\mathrm{4}\right)+\left(\mathrm{5}+\mathrm{6}+\mathrm{7}\right)+… \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{9}+\mathrm{18}+\mathrm{27}+… \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{9}\left(\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+\mathrm{5}+\mathrm{6}+\mathrm{7}…….\right) \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{9S}_{\mathrm{n}} \\ $$$$\mathrm{S}_{\mathrm{n}} =−\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+.. \\ $$$$\mathrm{S}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}−\mathrm{2}+\mathrm{4}−\mathrm{8}+\mathrm{16}−\mathrm{32}+….. \\ $$$$\mathrm{S}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{2}+\mathrm{4}+\mathrm{8}+\mathrm{16}+… \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{2}\left(\mathrm{1}+\mathrm{2}+\mathrm{4}+\mathrm{8}+…\right) \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{2}\left(\mathrm{1}+\mathrm{2}\left(\mathrm{1}+\mathrm{2}+\mathrm{4}+\mathrm{8}+…\right)\right. \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{2}\left(\mathrm{1}+\mathrm{2S}_{\mathrm{n}} \right) \\ $$$$−\mathrm{3S}_{\mathrm{n}} =\mathrm{3}\Rightarrow\mathrm{S}_{\mathrm{n}} =−\mathrm{1} \\ $$