Menu Close

function-g-is-defined-in-0-pi-4-by-g-x-sinx-cos-3-x-1-Determinate-a-b-R-such-that-g-x-a-cos-4-x-b-cos-2-x-2-Deduct-the-primitive-G-of-the-function-t-x-1-cos-4-x-such-t




Question Number 128349 by mathocean1 last updated on 06/Jan/21
function g is defined in [0;(π/4)]  by g(x)=((sinx)/(cos^3 x)).  1. Determinate a;b ∈R such that  g′(x)=(a/(cos^4 x)) + (b/(cos^2 x)).  2.Deduct the primitive G of the   function t(x)=(1/(cos^4 x))  such that  t((π/4))=1.
functiongisdefinedin[0;π4]byg(x)=sinxcos3x.1.Determinatea;bRsuchthatg(x)=acos4x+bcos2x.2.DeducttheprimitiveGofthefunctiont(x)=1cos4xsuchthatt(π4)=1.
Answered by mathmax by abdo last updated on 06/Jan/21
g(x)=((sinx)/(cos^3 x)) ⇒g^′ (x)=((cos^4 x−3cosx^2 (−sinx)sinx)/(cos^6 x))  =((cos^4 x+3cos^2 x sin^2 x)/(cos^6 x)) =(1/(cos^2 x)) +((3sin^2 x)/(cos^4 x))  =(1/(cos^2 x))+((3(1−cos^2 x))/(cos^4 x)) =(1/(cos^2 x))−(3/(cos^2 x))+(3/(cos^4 x))=((−2)/(cos^2 x)) +(3/(cos^4 x)) ⇒  ∫g^′ (x)dx =−2 ∫(dx/(cos^2 x)) +3∫ (dx/(cos^4 x)) ⇒  g(x)=−2∫ (dx/(cos^2 x)) +3∫ (dx/(cos^4 x)) ⇒  3∫ (dx/(cos^4 x)) =((sinx)/(cos^3 x)) +2∫  (dx/(cos^2 x))  we have  ∫  (dx/(cos^2 x)) =∫ ((2dx)/(1+cos(2x))) =_(tanx=t)  2  ∫  (dt/((1+t^2 )(1+((1−t^2 )/(1+t^2 )))))  =2 ∫ (dt/(1+t^2 +1−t^2 )) =t +c =tanx +c ⇒  ∫  (dx/(cos^4 x)) =((sinx)/(3cos^3 x)) +(2/3)tanx +C
g(x)=sinxcos3xg(x)=cos4x3cosx2(sinx)sinxcos6x=cos4x+3cos2xsin2xcos6x=1cos2x+3sin2xcos4x=1cos2x+3(1cos2x)cos4x=1cos2x3cos2x+3cos4x=2cos2x+3cos4xg(x)dx=2dxcos2x+3dxcos4xg(x)=2dxcos2x+3dxcos4x3dxcos4x=sinxcos3x+2dxcos2xwehavedxcos2x=2dx1+cos(2x)=tanx=t2dt(1+t2)(1+1t21+t2)=2dt1+t2+1t2=t+c=tanx+cdxcos4x=sinx3cos3x+23tanx+C

Leave a Reply

Your email address will not be published. Required fields are marked *