Menu Close

g-l-sin-0-Exact-form-May-include-elliptic-integral-




Question Number 127974 by Dwaipayan Shikari last updated on 03/Jan/21
θ^(••) +(g/l)sinθ=0  Exact form (May include elliptic integral)
θ+glsinθ=0Exactform(Mayincludeellipticintegral)
Commented by Dwaipayan Shikari last updated on 03/Jan/21
My try  θ^(••)  θ^• +θ^• (g/l) sinθ=0⇒(1/2).(d/dt)(θ^• )^2 −(g/l).(d/dt)(cosθ)=0  ⇒(θ^• )^2 −((2g)/l)cos(θ)=C  ⇒(θ^• )^2 +((4g)/l)sin^2 (θ/2)=C+((2g)/l)⇒θ^• =(√(C+((2g)/l)−((4g)/l)sin^2 (θ/2)))  ⇒∫(dθ/( (√(C+((2g)/l)))((√(1−((4g)/(C .l+2g))sin^2 (θ/2))))))=∫dt  ⇒2∫(dζ/( (√(C+((2g)/l)))((√(1−((√((4g)/(C .l+2g))))^2 sin^2 ζ)))))=t+Φ  ⇒2(1/( (√(C+((2g)/l)))))F((θ/2)∣(√((4g)/(C .l+2g))))=t+Φ  ⇒F((θ/2)∣(√((4g)/(C .l+2g))))=(1/2)(t+Φ)(√(C+((2g)/l)))
Mytryθθ+θglsinθ=012.ddt(θ)2gl.ddt(cosθ)=0(θ)22glcos(θ)=C(θ)2+4glsin2θ2=C+2glθ=C+2gl4glsin2θ2dθC+2gl(14gC.l+2gsin2θ2)=dt2dζC+2gl(1(4gC.l+2g)2sin2ζ)=t+Φ21C+2glF(θ24gC.l+2g)=t+ΦF(θ24gC.l+2g)=12(t+Φ)C+2gl
Answered by mr W last updated on 03/Jan/21
θ^• (dθ^(•) /dθ)=−(g/l)sin θ  (θ^(•) )^2 =((2g)/l)(cos θ−cos θ_0 )  θ^• =(dθ/dt)=(√((2g(cos θ−cos θ_0 ))/l))  (dθ/( (√(cos θ−cos θ_0 ))))=(√((2g)/l)) dt  ⇒t=(√(l/(2g)))∫_0 ^θ (dθ/( (√(cos θ−cos θ_0 ))))  ⇒t=(√((2l)/g))×((F((θ/2)∣(2/(1−cos θ_0 ))))/( (√(1−cos θ_0 ))))
θdθdθ=glsinθ(θ)2=2gl(cosθcosθ0)θ=dθdt=2g(cosθcosθ0)ldθcosθcosθ0=2gldtt=l2g0θdθcosθcosθ0t=2lg×F(θ221cosθ0)1cosθ0
Commented by Dwaipayan Shikari last updated on 03/Jan/21
Thanking you sir
Thankingyousir

Leave a Reply

Your email address will not be published. Required fields are marked *