Menu Close

g-x-6x-2-5ax-b-2-given-that-g-x-has-only-two-roots-and-are-x-1-and-x-2-find-the-value-of-a-and-b-Using-x-1-as-a-root-detemine-the-extend-to-which-x-2-is-a-root-occurance-as-a-root-




Question Number 35513 by Rio Mike last updated on 19/May/18
g(x)= 6x^2 − 5ax + b^2   given that g(x) has only two roots  and are (x−1) and (x−2)  find the value of a and b.Using  (x−1) as a root detemine the   extend to which (x−2) is a root  (occurance as a root).
$${g}\left({x}\right)=\:\mathrm{6}{x}^{\mathrm{2}} −\:\mathrm{5}{ax}\:+\:{b}^{\mathrm{2}} \\ $$$${given}\:{that}\:{g}\left({x}\right)\:{has}\:{only}\:{two}\:{roots} \\ $$$${and}\:{are}\:\left({x}−\mathrm{1}\right)\:{and}\:\left({x}−\mathrm{2}\right) \\ $$$${find}\:{the}\:{value}\:{of}\:{a}\:{and}\:{b}.{Using} \\ $$$$\left({x}−\mathrm{1}\right)\:{as}\:{a}\:{root}\:{detemine}\:{the}\: \\ $$$${extend}\:{to}\:{which}\:\left({x}−\mathrm{2}\right)\:{is}\:{a}\:{root} \\ $$$$\left({occurance}\:{as}\:{a}\:{root}\right). \\ $$
Answered by Rasheed.Sindhi last updated on 19/May/18
g(x)= 6x^2 − 5ax + b^2     ∵ x−1 is factor  g(1)= 6(1)^2 − 5a(1) + b^2 =0                  b^2 −5a=−6..........A    ∵ x−2 is factor  g(2)= 6(2)^2 − 5a(2) + b^2 =0                 b^2 −10a=24..........B  A−B: 5a=−30⇒a=−6  A⇒b^2 −5(−6)=−6           b^2 =−6−30=−36          b=±6i
$${g}\left({x}\right)=\:\mathrm{6}{x}^{\mathrm{2}} −\:\mathrm{5}{ax}\:+\:{b}^{\mathrm{2}} \\ $$$$\:\:\because\:{x}−\mathrm{1}\:\mathrm{is}\:\mathrm{factor} \\ $$$${g}\left(\mathrm{1}\right)=\:\mathrm{6}\left(\mathrm{1}\right)^{\mathrm{2}} −\:\mathrm{5}{a}\left(\mathrm{1}\right)\:+\:{b}^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{b}^{\mathrm{2}} −\mathrm{5}{a}=−\mathrm{6}……….\mathrm{A} \\ $$$$\:\:\because\:{x}−\mathrm{2}\:\mathrm{is}\:\mathrm{factor} \\ $$$${g}\left(\mathrm{2}\right)=\:\mathrm{6}\left(\mathrm{2}\right)^{\mathrm{2}} −\:\mathrm{5}{a}\left(\mathrm{2}\right)\:+\:{b}^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{b}^{\mathrm{2}} −\mathrm{10}{a}=\mathrm{24}……….\mathrm{B} \\ $$$$\mathrm{A}−\mathrm{B}:\:\mathrm{5}{a}=−\mathrm{30}\Rightarrow{a}=−\mathrm{6} \\ $$$$\mathrm{A}\Rightarrow{b}^{\mathrm{2}} −\mathrm{5}\left(−\mathrm{6}\right)=−\mathrm{6} \\ $$$$\:\:\:\:\:\:\:\:\:{b}^{\mathrm{2}} =−\mathrm{6}−\mathrm{30}=−\mathrm{36} \\ $$$$\:\:\:\:\:\:\:\:{b}=\pm\mathrm{6}{i} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *