Menu Close

g-x-cos-2arcsinx-calculate-dg-dx-and-d-2-g-dx-2-2-find-1-2-1-2-g-x-dx-




Question Number 146901 by mathmax by abdo last updated on 16/Jul/21
g(x)=cos(2arcsinx)    calculate (dg/dx) and (d^2 g/dx^2 )  2)find ∫_(−(1/2)) ^(1/2)  g(x)dx
g(x)=cos(2arcsinx)calculatedgdxandd2gdx22)find1212g(x)dx
Answered by ArielVyny last updated on 18/Jul/21
(dg/dx)=−2(1/( (√(1−x^2 ))))sin(2arcsinx)  (d^2 g/dx^2 )=−2[−(((−2x)/(2(√(1−x^2 ))))/(1−x^2 ))sin(2arcsinx)−2(1/( (√(1−x^2 ))))cos(2arsinx)]  =−2[−((−x)/( (√(1−x^2 ))))×(1/(1−x^2 ))sin(2arsinx)−2(1/( (√(1−x^2 ))))cos(2arcsinx)]  (d^2 g/dx^2 )=−2[((xsin(2arcsinx))/((1−x^2 )^(3/2) ))−2((cos(2arcsinx))/( (√(1−x^2 ))))]    2   ...∫_(−(1/2)) ^(1/2) cos[2arcsinx]dx  f(x)=cos(2arcsinx) est paire donc  ∫_(−(1/2)) ^(1/2) cos(2arcsinx)dx=2∫_0 ^(1/2) cos(2arcsinx)dx  on pose du=1→u=x  v=cos(2arcsinx)→dv=−2(1/( (√(1−x^2 ))))sin(2arcsinx)  I=2[xcos(2arcsinx)]+2∫_0 ^(1/2) ((2x)/( (√(1−x^2 ))))sin(2arcsinx)dx  du=((2x)/( (√(1−x^2 ))))→u=−(√(1−x^2 ))  v=sin(2arcsinx)→dv=2(1/( (√(1−x^2 ))))cos(2arsinx)  I=[2xcos(2arcsinx)]_0 ^1 −[2(√(1−x^2 ))sin(2arcsinx)]_0 ^1 +2∫_0 ^1 (2/( (√(1−x^2 ))))cos(2arcsinx)  I=[2xcos(2arcsinx)−2(√(1−x^2 ))sin(2arcsinx)+2sin(2arcsinx)]_0 ^1   I=−2  Mr mathmax still chek my work  please
dgdx=211x2sin(2arcsinx)d2gdx2=2[2x21x21x2sin(2arcsinx)211x2cos(2arsinx)]=2[x1x2×11x2sin(2arsinx)211x2cos(2arcsinx)]d2gdx2=2[xsin(2arcsinx)(1x2)322cos(2arcsinx)1x2]21212cos[2arcsinx]dxf(x)=cos(2arcsinx)estpairedonc1212cos(2arcsinx)dx=2012cos(2arcsinx)dxonposedu=1u=xv=cos(2arcsinx)dv=211x2sin(2arcsinx)I=2[xcos(2arcsinx)]+20122x1x2sin(2arcsinx)dxdu=2x1x2u=1x2v=sin(2arcsinx)dv=211x2cos(2arsinx)I=[2xcos(2arcsinx)]01[21x2sin(2arcsinx)]01+20121x2cos(2arcsinx)I=[2xcos(2arcsinx)21x2sin(2arcsinx)+2sin(2arcsinx)]01I=2Mrmathmaxstillchekmyworkplease

Leave a Reply

Your email address will not be published. Required fields are marked *