Menu Close

gcd-a-b-lcm-a-b-111-find-a-and-b-




Question Number 123304 by mordo last updated on 24/Nov/20
gcd(a;b)+lcm(a;b)=111  find a and b
gcd(a;b)+lcm(a;b)=111findaandb
Commented by mr W last updated on 24/Nov/20
a=1  b=110
a=1b=110
Answered by MJS_new last updated on 24/Nov/20
(1) gcd (a, b) =1 ⇒ lcm (a, b) =ab=110  (2) gcd (a, b) =k≠1 ⇒ a=kx∧b=ky ⇒       ⇒ lcm (a, b) =kxy ⇒ k+kxy=111 ⇔       ⇔ k=((111)/(xy+1)) with gcd (x, y) =1  in both cases we can try to find solutions  for a<b I get these pairs:  a     b  1     110  2     55  3     108  5     22  10   11  12   27  37   74
(1)gcd(a,b)=1lcm(a,b)=ab=110(2)gcd(a,b)=k1a=kxb=kylcm(a,b)=kxyk+kxy=111k=111xy+1withgcd(x,y)=1inbothcaseswecantrytofindsolutionsfora<bIgetthesepairs:ab11102553108522101112273774
Answered by floor(10²Eta[1]) last updated on 24/Nov/20
let d=gcd(a, b)⇒a=dx, b=dy  where gcd(x, y)=1  d+dxy=111∴d(1+xy)=111  d∣111⇒d=1, 3, 37, 111  Case 1: d=1⇒xy=ab=110=11.5.2  a=11.5.2, b=1  a=11.5, b=2  a=11.2, b=5  a=11, b=2.5  Case 2: d=3⇒xy=36=2^2 .3^2   x=2^2 .3^2 , y=1⇒a=2^2 .3^3 , b=3  x=3^2 , y=2^2 ⇒a=3^3 , b=2^2 .3  Case 3: d=37⇒xy=2  x=2, y=1⇒a=37.2, b=37  Case 4: d=111 (no sol.)  (a, b)={(110, 1), (55, 2), (22, 5), (11, 10)  (108, 3), (27,12), (74, 37)}  and the (b, a) pairs
letd=gcd(a,b)a=dx,b=dywheregcd(x,y)=1d+dxy=111d(1+xy)=111d111d=1,3,37,111Case1:d=1xy=ab=110=11.5.2a=11.5.2,b=1a=11.5,b=2a=11.2,b=5a=11,b=2.5Case2:d=3xy=36=22.32x=22.32,y=1a=22.33,b=3x=32,y=22a=33,b=22.3Case3:d=37xy=2x=2,y=1a=37.2,b=37Case4:d=111(nosol.)(a,b)={(110,1),(55,2),(22,5),(11,10)(108,3),(27,12),(74,37)}andthe(b,a)pairs
Commented by mordo last updated on 25/Nov/20
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *