Menu Close

geometric-series-b-4-b-7-b-10-b-1-b-3-b-5-2-12-find-b-5-b-2-




Question Number 149424 by mathdanisur last updated on 05/Aug/21
geometric series  ((b_4 ∙b_7 ∙b_(10) )/(b_1 ∙b_3 ∙b_5 )) = 2^(12)   find   (b_5 /b_2 ) = ?
$${geometric}\:{series}\:\:\frac{{b}_{\mathrm{4}} \centerdot{b}_{\mathrm{7}} \centerdot{b}_{\mathrm{10}} }{{b}_{\mathrm{1}} \centerdot{b}_{\mathrm{3}} \centerdot{b}_{\mathrm{5}} }\:=\:\mathrm{2}^{\mathrm{12}} \\ $$$${find}\:\:\:\frac{{b}_{\mathrm{5}} }{{b}_{\mathrm{2}} }\:=\:? \\ $$
Answered by nimnim last updated on 05/Aug/21
   b_n =ar^(n−1) , then we have             ((ar^3 .ar^6 .ar^9 )/(a.ar^2 .ar^4 ))=2^(12)    ⇒  r^(12) =2^(12) ⇒r=2    ∴ (b_5 /b_2 )=((ar^4 )/(ar))=r^3 =2^3 =8 ★
$$\:\:\:{b}_{{n}} ={ar}^{{n}−\mathrm{1}} ,\:{then}\:{we}\:{have}\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\frac{{ar}^{\mathrm{3}} .{ar}^{\mathrm{6}} .{ar}^{\mathrm{9}} }{{a}.{ar}^{\mathrm{2}} .{ar}^{\mathrm{4}} }=\mathrm{2}^{\mathrm{12}} \:\:\:\Rightarrow\:\:{r}^{\mathrm{12}} =\mathrm{2}^{\mathrm{12}} \Rightarrow{r}=\mathrm{2} \\ $$$$\:\:\therefore\:\frac{{b}_{\mathrm{5}} }{{b}_{\mathrm{2}} }=\frac{{ar}^{\mathrm{4}} }{{ar}}={r}^{\mathrm{3}} =\mathrm{2}^{\mathrm{3}} =\mathrm{8}\:\bigstar \\ $$
Commented by mathdanisur last updated on 05/Aug/21
Thank you Ser
$${Thank}\:{you}\:{Ser} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *