Menu Close

Give-a-proof-for-2-2-2-2-2-2-




Question Number 49116 by hassentimol last updated on 03/Dec/18
Give a proof for :  2 = (√(2 + (√(2 + (√( 2 + (√(2 + (√( 2 ... ))))))))))
Giveaprooffor:2=2+2+2+2+2
Commented by maxmathsup by imad last updated on 03/Dec/18
let u_(n+1) =(√(2+u_n ))  with n≥0 and u_o =(√2)  ⇒u_(n+1) =f(u_n ) with f(x)=(√(2+x))  we prove by recurrence that u_n >0  we have for x>0 f^′ (x)=(1/(2(√(2+x))))>0 so  f is increasing on [0,+∞[  let w(x)=x−f(x) ⇒  w^′ (x)=1−f^′ (x)=1−(1/(2(√(2+x)))) =((2(√(2+x))−1)/(2(√(2+x)))) >0 ⇒w is increasing on [0,+∞[  we have w(1) =1−f(1)=1−(√3)<0    w(3)=3−f(3)=3−(√5)>0 ⇒ ∃! x_0 ∈]1,3[  / w(x_0 )=0    we verify that x_0 =2   if l=lim_(n→+∞) u_n  we get f(l)=l ⇒  l =x_0 =2 .
letun+1=2+unwithn0anduo=2un+1=f(un)withf(x)=2+xweprovebyrecurrencethatun>0wehaveforx>0f(x)=122+x>0sofisincreasingon[0,+[letw(x)=xf(x)w(x)=1f(x)=1122+x=22+x122+x>0wisincreasingon[0,+[wehavew(1)=1f(1)=13<0w(3)=3f(3)=35>0!x0]1,3[/w(x0)=0weverifythatx0=2ifl=limn+unwegetf(l)=ll=x0=2.
Commented by hassentimol last updated on 10/Dec/18
Thanks sir
Thankssir
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Dec/18
k=(√(2+(√(2+(√(2...∞)) ))))  k=(√(2+k))   k^2 −k−2=0  k^2 −2k+k−2=0  k(k−2)+1(k−2)=0  (k−2)(k+1)=0  so k=2
k=2+2+2k=2+kk2k2=0k22k+k2=0k(k2)+1(k2)=0(k2)(k+1)=0sok=2

Leave a Reply

Your email address will not be published. Required fields are marked *