Menu Close

give-a-Z-and-prove-that-if-a-2-4-than-a-3-can-t-6-




Question Number 116513 by bounhome last updated on 04/Oct/20
give a∈Z and prove that if (a−2)∣4 than (a−3)can′t∣6
$${give}\:{a}\in{Z}\:{and}\:{prove}\:{that}\:{if}\:\left({a}−\mathrm{2}\right)\mid\mathrm{4}\:{than}\:\left({a}−\mathrm{3}\right){can}'{t}\mid\mathrm{6} \\ $$
Answered by floor(10²Eta[1]) last updated on 04/Oct/20
a−2∣4⇒a−2∈{±1,±2,±4}  ⇒a∈A:{−2,0,1,3,4,6}  a−3∣6⇒a−3∈{±1,±2,±3,±6}  ⇒a∈B:{−3,0,1,2,4,5,6,9}  A∩B=C:{0,1,4,6}  so a−2∣4 and a−3∣6 if and only if a∈C
$$\mathrm{a}−\mathrm{2}\mid\mathrm{4}\Rightarrow\mathrm{a}−\mathrm{2}\in\left\{\pm\mathrm{1},\pm\mathrm{2},\pm\mathrm{4}\right\} \\ $$$$\Rightarrow\mathrm{a}\in\mathrm{A}:\left\{−\mathrm{2},\mathrm{0},\mathrm{1},\mathrm{3},\mathrm{4},\mathrm{6}\right\} \\ $$$$\mathrm{a}−\mathrm{3}\mid\mathrm{6}\Rightarrow\mathrm{a}−\mathrm{3}\in\left\{\pm\mathrm{1},\pm\mathrm{2},\pm\mathrm{3},\pm\mathrm{6}\right\} \\ $$$$\Rightarrow\mathrm{a}\in\mathrm{B}:\left\{−\mathrm{3},\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{4},\mathrm{5},\mathrm{6},\mathrm{9}\right\} \\ $$$$\mathrm{A}\cap\mathrm{B}=\mathrm{C}:\left\{\mathrm{0},\mathrm{1},\mathrm{4},\mathrm{6}\right\} \\ $$$$\mathrm{so}\:\mathrm{a}−\mathrm{2}\mid\mathrm{4}\:\mathrm{and}\:\mathrm{a}−\mathrm{3}\mid\mathrm{6}\:\mathrm{if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if}\:\mathrm{a}\in\mathrm{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *