Menu Close

give-the-decomposition-of-F-x-1-x-2n-1-inside-C-x-then-find-the-value-of-0-dx-1-x-2n-n-N-and-n-o-




Question Number 26757 by abdo imad last updated on 28/Dec/17
give the decomposition of F(x) =   (1/(x^(2n) +1))  inside C[x]  then find the value of  ∫_0 ^∞   (dx/(1+x^(2n) ))      n∈N  and n≠o
givethedecompositionofF(x)=1x2n+1insideC[x]thenfindthevalueof0dx1+x2nnNandno
Commented by abdo imad last updated on 03/Jan/18
let find the poles of  F  z^(2n) +1=0 ⇔   z^(2n)  = e^(i(2k+1)π)  so the poles of F are  z_k =  e^(i(((2k+1)π)/(2n)))   k∈[[0,2n−1]]  F(x)=  Σ_(k=0) ^(2n−1)  (λ_k /(x−z_k ))     and   λ_k  =  (1/(2n z_k ^(2n−1) )) =−(1/(2n)) z_k   F(x)= −(1/(2n))  Σ_(k=0) ^(2n−1)   (z_k /(x−z_k ))  but  z_0  = e^(i(π/(2n)))      z_0 ^− = e^(−i(π/(2n )))  = e^(i(((2π−(π/(2n))))/))   = z_(2n−1)     ,  z_1 ^−   =z_(2n−2) .....  ⇒   F(x)  =Σ_(k=0) ^(n−1) (  (z_k /(x−z_k ))  + (z_k ^− /(x−z_k ^− )) )  .
letfindthepolesofFz2n+1=0z2n=ei(2k+1)πsothepolesofFarezk=ei(2k+1)π2nk[[0,2n1]]F(x)=k=02n1λkxzkandλk=12nzk2n1=12nzkF(x)=12nk=02n1zkxzkbutz0=eiπ2nz0=eiπ2n=ei(2ππ2n)=z2n1,z1=z2n2..F(x)=k=0n1(zkxzk+zkxzk).
Commented by abdo imad last updated on 03/Jan/18
F(x)= −(1/(2n))  Σ_(k=0) ^(n−1) (   (z_k /(x−z_k )) +  (z_k ^− /(x−z_k ^− ))  )
F(x)=12nk=0n1(zkxzk+zkxzk)
Commented by abdo imad last updated on 23/Jan/18
∫_0 ^∞   (dx/(1+x^(2n) )) = (1/2)∫_(−∞) ^(+∞)    (dx/(1+x^(2n) ))  = ((−1)/(4n))  (Σ_(k=0) ^(n−1)  z_k  ∫_R   (dx/(x−z_k ))  +Σ_(k=0) ^(n−1)  z_k ^−   ∫_R  (dx/(x−z_k ^− )) )  = ((−1)/(4n))( iπ Σ_(k=0) ^(n−1)  z_k −  iπ Σ_(k=) ^(n−1)  z_k ^−   )  = ((−1)/(4n))(−2π) Σ_(k=0) ^(n−1)  sin((((2k+1)π)/(2n)))  = (π/(2n)) Σ_(k=0) ^(n−1)  sin((((2k+1)π)/(2n))) let find  A= Σ_(k=0) ^(n−1)  sin(((2k+1)π)/(2n)))=Im( Σ_(k=0) ^(n−1)  e^(i((((2k+1)π)/(2n)))) )but  = e^(i(π/(2n)))   Σ_(k=0) ^(n−1)   (e^(i(π/n) ) )^k =  e^(i(π/(2n)))  (2/(1−e^(i(π/n)) ))  =((2 e^(i(π/(2n))) )/(1−cos((π/n))−isin((π/n)))) =   (e^(i(π/(2n))) /(sin^2 ((π/(2n))) −2isin((π/(2n)))cos((π/(2n)))))  =   ((−1)/(isin((π/(2n)))))=  (i/(sin((π/(2n))))) ⇒ A= (1/(sin((π/(2n)))))  so  ∫_0 ^∞      (dx/(1+x^(2n) ))=  (π/(2n sin((π/(2n)))))  =   ((π/(2n))/(sin((π/(2n)))))  .
0dx1+x2n=12+dx1+x2n=14n(k=0n1zkRdxxzk+k=0n1zkRdxxzk)=14n(iπk=0n1zkiπk=n1zk)=14n(2π)k=0n1sin((2k+1)π2n)=π2nk=0n1sin((2k+1)π2n)letfindA=k=0n1sin(2k+1)π2n)=Im(k=0n1ei((2k+1)π2n))but=eiπ2nk=0n1(eiπn)k=eiπ2n21eiπn=2eiπ2n1cos(πn)isin(πn)=eiπ2nsin2(π2n)2isin(π2n)cos(π2n)=1isin(π2n)=isin(π2n)A=1sin(π2n)so0dx1+x2n=π2nsin(π2n)=π2nsin(π2n).

Leave a Reply

Your email address will not be published. Required fields are marked *