give-the-decomposition-of-F-x-1-x-2n-1-inside-C-x-then-find-the-value-of-0-dx-1-x-2n-n-N-and-n-o- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 26757 by abdo imad last updated on 28/Dec/17 givethedecompositionofF(x)=1x2n+1insideC[x]thenfindthevalueof∫0∞dx1+x2nn∈Nandn≠o Commented by abdo imad last updated on 03/Jan/18 letfindthepolesofFz2n+1=0⇔z2n=ei(2k+1)πsothepolesofFarezk=ei(2k+1)π2nk∈[[0,2n−1]]F(x)=∑k=02n−1λkx−zkandλk=12nzk2n−1=−12nzkF(x)=−12n∑k=02n−1zkx−zkbutz0=eiπ2nz0−=e−iπ2n=ei(2π−π2n)=z2n−1,z1−=z2n−2…..⇒F(x)=∑k=0n−1(zkx−zk+zk−x−zk−). Commented by abdo imad last updated on 03/Jan/18 F(x)=−12n∑k=0n−1(zkx−zk+zk−x−zk−) Commented by abdo imad last updated on 23/Jan/18 ∫0∞dx1+x2n=12∫−∞+∞dx1+x2n=−14n(∑k=0n−1zk∫Rdxx−zk+∑k=0n−1zk−∫Rdxx−zk−)=−14n(iπ∑k=0n−1zk−iπ∑k=n−1zk−)=−14n(−2π)∑k=0n−1sin((2k+1)π2n)=π2n∑k=0n−1sin((2k+1)π2n)letfindA=∑k=0n−1sin(2k+1)π2n)=Im(∑k=0n−1ei((2k+1)π2n))but=eiπ2n∑k=0n−1(eiπn)k=eiπ2n21−eiπn=2eiπ2n1−cos(πn)−isin(πn)=eiπ2nsin2(π2n)−2isin(π2n)cos(π2n)=−1isin(π2n)=isin(π2n)⇒A=1sin(π2n)so∫0∞dx1+x2n=π2nsin(π2n)=π2nsin(π2n). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-157824Next Next post: let-give-D-x-y-R-2-x-2-x-y-2-4-and-0-y-1-calculate-D-ln-xy-x-2-y-2-dxdy- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.