Menu Close

give-the-developpement-at-integr-series-for-f-x-ln-1-x-ln-1-x-x-2-find-lim-x-0-f-x-




Question Number 29846 by abdo imad last updated on 12/Feb/18
give the developpement  at integr series for  f(x)=((ln(1+x)−ln(1−x))/x)  2)find   lim_(x→0)  f(x).
$${give}\:{the}\:{developpement}\:\:{at}\:{integr}\:{series}\:{for} \\ $$$${f}\left({x}\right)=\frac{{ln}\left(\mathrm{1}+{x}\right)−{ln}\left(\mathrm{1}−{x}\right)}{{x}} \\ $$$$\left.\mathrm{2}\right){find}\:\:\:{lim}_{{x}\rightarrow\mathrm{0}} \:{f}\left({x}\right). \\ $$
Commented by maxmathsup by imad last updated on 09/Apr/19
1) we have (d/dx)(ln(1+x)) =(1/(1+x)) =Σ_(n=0) ^∞  (−1)^n  x^n   ⇒ln(1+x) =Σ_(n=0) ^∞  (((−1)^n  x^(n+1) )/(n+1))  =Σ_(n=1) ^∞   (((−1)^(n−1)  x^n )/n)   let change x by −x ⇒  ln(1−x) =Σ_(n=1) ^∞  (((−1)^(n−1)  (−x)^n )/n) =−Σ_(n=1) ^∞  (x^n /n) ⇒  ln(1+x)−ln(1−x) =Σ_(n=1) ^∞  (((−1)^(n−1)  x^n )/n) +Σ_(n=1) ^∞  (x^n /n)  =Σ_(n=1) ^∞ (((1−(−1)^n )/n))x^n  =Σ_(n=1) ^∞  (2/(2n+1)) x^(2n+1)   ⇒f(x) =2 Σ_(n=1) ^∞    (x^(2n) /(2n+1))  with ∣x∣<1   and x≠0  2)  we have ln(1+x) ∼ x   (x ∈v(0))  and ln(1−x)∼−x  ⇒  ln(1+x)−ln(1−x) ∼2x ⇒((ln(1+x)−ln(1−x))/x) ∼ 2 ⇒  lim_(x→0)  f(x) =2 .
$$\left.\mathrm{1}\right)\:{we}\:{have}\:\frac{{d}}{{dx}}\left({ln}\left(\mathrm{1}+{x}\right)\right)\:=\frac{\mathrm{1}}{\mathrm{1}+{x}}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:{x}^{{n}} \:\:\Rightarrow{ln}\left(\mathrm{1}+{x}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} \:{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:{x}^{{n}} }{{n}}\:\:\:{let}\:{change}\:{x}\:{by}\:−{x}\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}−{x}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\boldsymbol{{n}}−\mathrm{1}} \:\left(−\boldsymbol{{x}}\right)^{\boldsymbol{{n}}} }{\boldsymbol{{n}}}\:=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}}\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+{x}\right)−{ln}\left(\mathrm{1}−{x}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:{x}^{{n}} }{{n}}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \left(\frac{\mathrm{1}−\left(−\mathrm{1}\right)^{{n}} }{{n}}\right){x}^{{n}} \:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{2}}{\mathrm{2}{n}+\mathrm{1}}\:{x}^{\mathrm{2}{n}+\mathrm{1}} \:\:\Rightarrow{f}\left({x}\right)\:=\mathrm{2}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{x}^{\mathrm{2}{n}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$${with}\:\mid{x}\mid<\mathrm{1}\:\:\:{and}\:{x}\neq\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:\:{we}\:{have}\:{ln}\left(\mathrm{1}+{x}\right)\:\sim\:{x}\:\:\:\left({x}\:\in{v}\left(\mathrm{0}\right)\right)\:\:{and}\:{ln}\left(\mathrm{1}−{x}\right)\sim−{x}\:\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+{x}\right)−{ln}\left(\mathrm{1}−{x}\right)\:\sim\mathrm{2}{x}\:\Rightarrow\frac{{ln}\left(\mathrm{1}+{x}\right)−{ln}\left(\mathrm{1}−{x}\right)}{{x}}\:\sim\:\mathrm{2}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \:{f}\left({x}\right)\:=\mathrm{2}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *