Menu Close

give-the-developpement-at-integr-series-for-f-x-ln-1-x-ln-1-x-x-2-find-lim-x-0-f-x-




Question Number 29846 by abdo imad last updated on 12/Feb/18
give the developpement  at integr series for  f(x)=((ln(1+x)−ln(1−x))/x)  2)find   lim_(x→0)  f(x).
givethedeveloppementatintegrseriesforf(x)=ln(1+x)ln(1x)x2)findlimx0f(x).
Commented by maxmathsup by imad last updated on 09/Apr/19
1) we have (d/dx)(ln(1+x)) =(1/(1+x)) =Σ_(n=0) ^∞  (−1)^n  x^n   ⇒ln(1+x) =Σ_(n=0) ^∞  (((−1)^n  x^(n+1) )/(n+1))  =Σ_(n=1) ^∞   (((−1)^(n−1)  x^n )/n)   let change x by −x ⇒  ln(1−x) =Σ_(n=1) ^∞  (((−1)^(n−1)  (−x)^n )/n) =−Σ_(n=1) ^∞  (x^n /n) ⇒  ln(1+x)−ln(1−x) =Σ_(n=1) ^∞  (((−1)^(n−1)  x^n )/n) +Σ_(n=1) ^∞  (x^n /n)  =Σ_(n=1) ^∞ (((1−(−1)^n )/n))x^n  =Σ_(n=1) ^∞  (2/(2n+1)) x^(2n+1)   ⇒f(x) =2 Σ_(n=1) ^∞    (x^(2n) /(2n+1))  with ∣x∣<1   and x≠0  2)  we have ln(1+x) ∼ x   (x ∈v(0))  and ln(1−x)∼−x  ⇒  ln(1+x)−ln(1−x) ∼2x ⇒((ln(1+x)−ln(1−x))/x) ∼ 2 ⇒  lim_(x→0)  f(x) =2 .
1)wehaveddx(ln(1+x))=11+x=n=0(1)nxnln(1+x)=n=0(1)nxn+1n+1=n=1(1)n1xnnletchangexbyxln(1x)=n=1(1)n1(x)nn=n=1xnnln(1+x)ln(1x)=n=1(1)n1xnn+n=1xnn=n=1(1(1)nn)xn=n=122n+1x2n+1f(x)=2n=1x2n2n+1withx∣<1andx02)wehaveln(1+x)x(xv(0))andln(1x)xln(1+x)ln(1x)2xln(1+x)ln(1x)x2limx0f(x)=2.

Leave a Reply

Your email address will not be published. Required fields are marked *