Question Number 29165 by abdo imad last updated on 04/Feb/18
$${give}\:{the}\:{factorization}\:{inside}\:{C}\left[{x}\right]\:{for} \\ $$$${p}\left({x}\right)=\:\:{x}^{\mathrm{4}} \:−\frac{\mathrm{1}−{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:\:. \\ $$
Commented by abdo imad last updated on 06/Feb/18
$${let}\:{find}\:{the}\:{roots}\:{lf}\:{p}\left({x}\right)\:{p}\left({z}\right)=\mathrm{0}\:\Leftrightarrow{z}^{\mathrm{4}} =\frac{\mathrm{1}−{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:{but} \\ $$$$\mathrm{1}−{i}\sqrt{\mathrm{3}}=\mathrm{2}\left(\:\frac{\mathrm{1}}{\mathrm{2}}−{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)=\:\mathrm{2}\:{e}^{−{i}\frac{\pi}{\mathrm{3}}} \:{let}\:{put}\:{z}={r}\:{e}^{{i}\theta} \\ $$$${p}\left({z}\right)=\mathrm{0}\Leftrightarrow\:{r}^{\mathrm{4}} =\mathrm{2}\:\:{and}\:\mathrm{4}\theta=−\frac{\pi}{\mathrm{3}}\:+\mathrm{2}{k}\pi\:\:\:\:\:{k}\in\left[\left[\mathrm{0},\mathrm{3}\right]\right] \\ $$$$\theta_{{k}} =−\frac{\pi}{\mathrm{12}}\:+\frac{{k}\pi}{\mathrm{2}}\:\:\:{so}\:{the}\:{roots}\:{are}\:{z}_{{k}} =^{\mathrm{4}} \sqrt{\mathrm{2}}\:{e}^{{i}\left(−\frac{\pi}{\mathrm{12}}+\frac{{k}\pi}{\mathrm{2}}\right)} \:\:{k}\in\left[\left[\mathrm{0},\mathrm{3}\right]\right]{its} \\ $$$${clear}\:{that}\:{the}\:{leading}\:{coefficient}\:{is}\:\mathrm{1}\:{so} \\ $$$${p}\left({x}\right)=\:\prod_{{k}=\mathrm{0}} ^{\mathrm{3}} \:\left({x}−{z}_{{k}} \right)=\left({x}−{z}_{\mathrm{0}} \right)\left({x}−{z}_{\mathrm{1}} \right)\left({x}−{z}_{\mathrm{2}} \right)\left({x}−{z}_{\mathrm{3}} \right){with} \\ $$$${z}_{\mathrm{0}} =^{\mathrm{4}} \sqrt{\mathrm{2}}\:{e}^{−{i}\frac{\pi}{\mathrm{12}}} \:\:\:,\:\:{z}_{\mathrm{1}} =^{\mathrm{4}} \sqrt{\mathrm{2}}\:{e}^{{i}\frac{\mathrm{5}\pi}{\mathrm{12}}} \:\:,\:{z}_{\mathrm{2}} =\:^{\mathrm{4}} \sqrt{\mathrm{2}}\:{e}^{{i}\frac{\mathrm{11}\pi}{\mathrm{12}}} \:,{z}_{\mathrm{3}} =^{\mathrm{4}} \sqrt{\mathrm{2}}\:{e}^{{i}\frac{\mathrm{17}\pi}{\mathrm{12}}} \:. \\ $$$$ \\ $$