Menu Close

give-the-factorization-inside-C-x-for-p-x-x-4-1-i-3-2-




Question Number 29165 by abdo imad last updated on 04/Feb/18
give the factorization inside C[x] for  p(x)=  x^4  −((1−i(√3))/2)  .
givethefactorizationinsideC[x]forp(x)=x41i32.
Commented by abdo imad last updated on 06/Feb/18
let find the roots lf p(x) p(z)=0 ⇔z^4 =((1−i(√3))/2) but  1−i(√3)=2( (1/2)−i((√3)/2))= 2 e^(−i(π/3))  let put z=r e^(iθ)   p(z)=0⇔ r^4 =2  and 4θ=−(π/3) +2kπ     k∈[[0,3]]  θ_k =−(π/(12)) +((kπ)/2)   so the roots are z_k =^4 (√2) e^(i(−(π/(12))+((kπ)/2)))   k∈[[0,3]]its  clear that the leading coefficient is 1 so  p(x)= Π_(k=0) ^3  (x−z_k )=(x−z_0 )(x−z_1 )(x−z_2 )(x−z_3 )with  z_0 =^4 (√2) e^(−i(π/(12)))    ,  z_1 =^4 (√2) e^(i((5π)/(12)))   , z_2 =^4 (√2) e^(i((11π)/(12)))  ,z_3 =^4 (√2) e^(i((17π)/(12)))  .
letfindtherootslfp(x)p(z)=0z4=1i32but1i3=2(12i32)=2eiπ3letputz=reiθp(z)=0r4=2and4θ=π3+2kπk[[0,3]]θk=π12+kπ2sotherootsarezk=42ei(π12+kπ2)k[[0,3]]itsclearthattheleadingcoefficientis1sop(x)=k=03(xzk)=(xz0)(xz1)(xz2)(xz3)withz0=42eiπ12,z1=42ei5π12,z2=42ei11π12,z3=42ei17π12.

Leave a Reply

Your email address will not be published. Required fields are marked *