Menu Close

Give-the-function-x-2-7x-8-0-have-two-roots-x-1-and-x-2-No-solving-the-function-Find-x-1-3-x-2-2023-




Question Number 192390 by TUN last updated on 16/May/23
Give the function:  x^2 −7x−8=0  have two roots x_(1 ) and x_2   No solving the function   Find: x_1 ^3 +x_2 +2023
$${Give}\:{the}\:{function}: \\ $$$${x}^{\mathrm{2}} −\mathrm{7}{x}−\mathrm{8}=\mathrm{0} \\ $$$${have}\:{two}\:{roots}\:{x}_{\mathrm{1}\:} {and}\:{x}_{\mathrm{2}} \\ $$$${No}\:{solving}\:{the}\:{function}\: \\ $$$${Find}:\:{x}_{\mathrm{1}} ^{\mathrm{3}} +{x}_{\mathrm{2}} +\mathrm{2023} \\ $$
Answered by AST last updated on 17/May/23
x_1 ^3 +x_2 +2023=p; x_2 ^3 +x_1 +2023=q  p+q=(x_1 +x_2 )^3 −3x_1 x_2 (x_1 +x_2 )+x_1 +x_2 +4046  x_1 +x_2 =7;x_1 x_2 =−8⇒p+q=343+168+7+4046=4564  pq=(x_1 x_2 )^3 +x_1 ^4 +2023(x_1 ^3 +x_2 ^3 )+x_2 ^4 +x_1 x_2 +2023(x_2 +x_1 )  +2023^2 =−512+[(7^2 +16)^2 −128]+2023(511)−8+2023(7)  +2023^2 =5144020  p+q=4464;pq=5144020⇒p(4464−p)=5144020  ⇒p=2030,q=2534 (up to symmetry)
$${x}_{\mathrm{1}} ^{\mathrm{3}} +{x}_{\mathrm{2}} +\mathrm{2023}={p};\:{x}_{\mathrm{2}} ^{\mathrm{3}} +{x}_{\mathrm{1}} +\mathrm{2023}={q} \\ $$$${p}+{q}=\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} \right)^{\mathrm{3}} −\mathrm{3}{x}_{\mathrm{1}} {x}_{\mathrm{2}} \left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} \right)+{x}_{\mathrm{1}} +{x}_{\mathrm{2}} +\mathrm{4046} \\ $$$${x}_{\mathrm{1}} +{x}_{\mathrm{2}} =\mathrm{7};{x}_{\mathrm{1}} {x}_{\mathrm{2}} =−\mathrm{8}\Rightarrow{p}+{q}=\mathrm{343}+\mathrm{168}+\mathrm{7}+\mathrm{4046}=\mathrm{4564} \\ $$$${pq}=\left({x}_{\mathrm{1}} {x}_{\mathrm{2}} \right)^{\mathrm{3}} +{x}_{\mathrm{1}} ^{\mathrm{4}} +\mathrm{2023}\left({x}_{\mathrm{1}} ^{\mathrm{3}} +{x}_{\mathrm{2}} ^{\mathrm{3}} \right)+{x}_{\mathrm{2}} ^{\mathrm{4}} +{x}_{\mathrm{1}} {x}_{\mathrm{2}} +\mathrm{2023}\left({x}_{\mathrm{2}} +{x}_{\mathrm{1}} \right) \\ $$$$+\mathrm{2023}^{\mathrm{2}} =−\mathrm{512}+\left[\left(\mathrm{7}^{\mathrm{2}} +\mathrm{16}\right)^{\mathrm{2}} −\mathrm{128}\right]+\mathrm{2023}\left(\mathrm{511}\right)−\mathrm{8}+\mathrm{2023}\left(\mathrm{7}\right) \\ $$$$+\mathrm{2023}^{\mathrm{2}} =\mathrm{5144020} \\ $$$${p}+{q}=\mathrm{4464};{pq}=\mathrm{5144020}\Rightarrow{p}\left(\mathrm{4464}−{p}\right)=\mathrm{5144020} \\ $$$$\Rightarrow{p}=\mathrm{2030},{q}=\mathrm{2534}\:\left({up}\:{to}\:{symmetry}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *