Menu Close

give-the-integralA-n-1-dt-1-x-n-with-n-integr-and-n-2-at-form-of-serie-




Question Number 65352 by mathmax by abdo last updated on 28/Jul/19
give the integralA_n = ∫_1 ^(+∞)  (dt/(1+x^n ))  with n integr and n≥2  at form of serie.
givetheintegralAn=1+dt1+xnwithnintegrandn2atformofserie.
Commented by mathmax by abdo last updated on 29/Jul/19
A_n =∫_1 ^(+∞)   (dx/(1+x^n ))  changement x =(1/t) give   A_n =−∫_0 ^1   (1/(1+(1/t^n ))) (−(dt/t^2 )) =∫_0 ^1   (t^n /((1+t^n )t^2 ))dt =∫_0 ^1    (t^(n−2) /(1+t^n ))dt  =∫_0 ^1  t^(n−2) (Σ_(k=0) ^∞ (−1)^k  t^(kn) )dt =Σ_(k=0) ^∞  (−1)^k  ∫_0 ^1   t^(n−2+kn)  dt  =Σ_(k=0) ^∞  (−1)^k   [(1/(n−2+kn +1)) t^(n−2+kn+1) ]_0 ^1   =Σ_(k=0) ^∞    (((−1)^k )/(n(k+1)−1)) =Σ_(k=1) ^∞   (((−1)^(k−1) )/(nk−1)) ⇒  A_n =(1/(n−1))−(1/(2n−1)) +(1/(3n−1)) −.....
An=1+dx1+xnchangementx=1tgiveAn=0111+1tn(dtt2)=01tn(1+tn)t2dt=01tn21+tndt=01tn2(k=0(1)ktkn)dt=k=0(1)k01tn2+kndt=k=0(1)k[1n2+kn+1tn2+kn+1]01=k=0(1)kn(k+1)1=k=1(1)k1nk1An=1n112n1+13n1..

Leave a Reply

Your email address will not be published. Required fields are marked *