Menu Close

Given-0-dx-a-2-x-2-pi-2a-find-0-dx-a-2-x-2-3-




Question Number 98826 by bramlex last updated on 16/Jun/20
Given ∫_0 ^∞  (dx/(a^2 +x^2 )) = (π/(2a))  find ∫_0 ^∞  (dx/((a^2 +x^2 )^3 )) ?
Given0dxa2+x2=π2afind0dx(a2+x2)3?
Commented by bemath last updated on 16/Jun/20
(d/da) [∫_0 ^∞  (dx/(a^2 +x^2 )) ] = (d/da) [(π/(2a)) ]  −2a ∫_0 ^∞  (dx/((a^2 +x^2 )^2 )) = ((−π)/(2a^2 ))  ∫_0 ^∞ (dx/((a^2 +x^2 )^2 )) = (π/(4a^3 ))  (d/da) [ ∫_0 ^∞  (dx/((a^2 +x^2 )^2 )) ] = (d/da) [(π/(4a^3 )) ]  −4a ∫_0 ^∞  (dx/((a^2 +x^2 )^3 )) = ((−3π)/(4a^4 ))  ∴ ∫_0 ^∞  (dx/((a^2 +x^2 )^3 )) = ((3π)/(16a^5 )) ■
dda[0dxa2+x2]=dda[π2a]2a0dx(a2+x2)2=π2a20dx(a2+x2)2=π4a3dda[0dx(a2+x2)2]=dda[π4a3]4a0dx(a2+x2)3=3π4a40dx(a2+x2)3=3π16a5◼
Commented by bramlex last updated on 16/Jun/20
greattt
greattt

Leave a Reply

Your email address will not be published. Required fields are marked *