Menu Close

Given-2-functions-f-and-g-n-times-derivable-within-the-open-interval-R-and-verify-the-property-f-x-0-f-k-x-0-0-g-x-0-g-k-x-0-0-k-1-2-n-1-Show-that-lim-x-x-0-f-x-




Question Number 101977 by Ar Brandon last updated on 05/Jul/20
Given 2 functions, f and g, n-times derivable within  the open interval, R and verify the property  f(x_0 )=f^((k)) (x_0 )=0 , g(x_0 )=g^((k)) (x_0 )=0 , ∀k∈{1,2,...,n−1}  Show that lim_(x→x_0 ) ((f(x))/(g(x)))=((f^((n)) (x_0 ))/(g^((n)) (x_0 )))
$$\mathrm{Given}\:\mathrm{2}\:\mathrm{functions},\:\mathrm{f}\:\mathrm{and}\:\mathrm{g},\:\mathrm{n}-\mathrm{times}\:\mathrm{derivable}\:\mathrm{within} \\ $$$$\mathrm{the}\:\mathrm{open}\:\mathrm{interval},\:\mathbb{R}\:\mathrm{and}\:\mathrm{verify}\:\mathrm{the}\:\mathrm{property} \\ $$$$\mathrm{f}\left(\mathrm{x}_{\mathrm{0}} \right)=\mathrm{f}^{\left(\mathrm{k}\right)} \left(\mathrm{x}_{\mathrm{0}} \right)=\mathrm{0}\:,\:\mathrm{g}\left(\mathrm{x}_{\mathrm{0}} \right)=\mathrm{g}^{\left(\mathrm{k}\right)} \left(\mathrm{x}_{\mathrm{0}} \right)=\mathrm{0}\:,\:\forall\mathrm{k}\in\left\{\mathrm{1},\mathrm{2},…,\mathrm{n}−\mathrm{1}\right\} \\ $$$$\mathrm{Show}\:\mathrm{that}\:\underset{\mathrm{x}\rightarrow\mathrm{x}_{\mathrm{0}} } {\mathrm{lim}}\frac{\mathrm{f}\left(\mathrm{x}\right)}{\mathrm{g}\left(\mathrm{x}\right)}=\frac{\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}_{\mathrm{0}} \right)}{\mathrm{g}^{\left(\mathrm{n}\right)} \left(\mathrm{x}_{\mathrm{0}} \right)} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *