Menu Close

given-2020-x-2020-x-3-2020-6x-2020-6x-2020-x-2020-x-




Question Number 163284 by MathsFan last updated on 05/Jan/22
 given  2020^x +2020^(−x) =3   (√((2020^(6x) −2020^(−6x) )/( 2020^x −2020^(−x) )))=?
$$\:{given}\:\:\mathrm{2020}^{{x}} +\mathrm{2020}^{−{x}} =\mathrm{3} \\ $$$$\:\sqrt{\frac{\mathrm{2020}^{\mathrm{6}{x}} −\mathrm{2020}^{−\mathrm{6}{x}} }{\:\mathrm{2020}^{{x}} −\mathrm{2020}^{−{x}} }}=? \\ $$
Answered by Rasheed.Sindhi last updated on 05/Jan/22
 2020^x +2020^(−x) =3   (√((2020^(6x) −2020^(−6x) )/( 2020^x −2020^(−x) )))=?  2020^x =y , 2020^(−x) =(1/y)    y+(1/y)=3   ( y+(1/y))^2 =9  y^2 +(1/y^2 )=9−2=7   (√((2020^(6x) −2020^(−6x) )/( 2020^x −2020^(−x) )))=(√((y^6 −(1/y^6 ))/(y−(1/y))))  =(√(((y−(1/y))(y+(1/y))(y^2 −1+(1/y^2 ))(y^2 +1+(1/y^2 )))/((y−(1/y)))))  =(√((y+(1/y))(y^2 −1+(1/y^2 ))(y^2 +1+(1/y^2 ))))  =(√((3)(7−1)(7+1)))=(√(144))=12
$$\:\mathrm{2020}^{{x}} +\mathrm{2020}^{−{x}} =\mathrm{3} \\ $$$$\:\sqrt{\frac{\mathrm{2020}^{\mathrm{6}{x}} −\mathrm{2020}^{−\mathrm{6}{x}} }{\:\mathrm{2020}^{{x}} −\mathrm{2020}^{−{x}} }}=? \\ $$$$\mathrm{2020}^{{x}} ={y}\:,\:\mathrm{2020}^{−{x}} =\frac{\mathrm{1}}{{y}} \\ $$$$\:\:{y}+\frac{\mathrm{1}}{{y}}=\mathrm{3} \\ $$$$\:\left(\:{y}+\frac{\mathrm{1}}{{y}}\right)^{\mathrm{2}} =\mathrm{9} \\ $$$${y}^{\mathrm{2}} +\frac{\mathrm{1}}{{y}^{\mathrm{2}} }=\mathrm{9}−\mathrm{2}=\mathrm{7} \\ $$$$\:\sqrt{\frac{\mathrm{2020}^{\mathrm{6}{x}} −\mathrm{2020}^{−\mathrm{6}{x}} }{\:\mathrm{2020}^{{x}} −\mathrm{2020}^{−{x}} }}=\sqrt{\frac{{y}^{\mathrm{6}} −\frac{\mathrm{1}}{{y}^{\mathrm{6}} }}{{y}−\frac{\mathrm{1}}{{y}}}} \\ $$$$=\sqrt{\frac{\cancel{\left({y}−\frac{\mathrm{1}}{{y}}\right)}\left({y}+\frac{\mathrm{1}}{{y}}\right)\left({y}^{\mathrm{2}} −\mathrm{1}+\frac{\mathrm{1}}{{y}^{\mathrm{2}} }\right)\left({y}^{\mathrm{2}} +\mathrm{1}+\frac{\mathrm{1}}{{y}^{\mathrm{2}} }\right)}{\cancel{\left({y}−\frac{\mathrm{1}}{{y}}\right)}}} \\ $$$$=\sqrt{\left({y}+\frac{\mathrm{1}}{{y}}\right)\left({y}^{\mathrm{2}} −\mathrm{1}+\frac{\mathrm{1}}{{y}^{\mathrm{2}} }\right)\left({y}^{\mathrm{2}} +\mathrm{1}+\frac{\mathrm{1}}{{y}^{\mathrm{2}} }\right)} \\ $$$$=\sqrt{\left(\mathrm{3}\right)\left(\mathrm{7}−\mathrm{1}\right)\left(\mathrm{7}+\mathrm{1}\right)}=\sqrt{\mathrm{144}}=\mathrm{12} \\ $$
Commented by MathsFan last updated on 05/Jan/22
merci senior
$${merci}\:{senior} \\ $$
Commented by peter frank last updated on 06/Jan/22
great
$$\mathrm{great} \\ $$
Commented by Rasheed.Sindhi last updated on 06/Jan/22
Thanks Peter Frank!
$$\mathbb{T}\mathrm{han}\Bbbk\mathrm{s}\:\mathrm{Peter}\:\mathrm{Frank}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *