Menu Close

given-27-a-64-b-216-c-72-find-2020abc-3ab-3ac-3bc-ab-ac-bc-2020abc-




Question Number 88128 by john santu last updated on 08/Apr/20
given 27^a  = 64^b  = 216^c  = 72  find ((2020abc)/(3ab+3ac+3bc)) + ((ab+ac+bc)/(2020abc))
given27a=64b=216c=72find2020abc3ab+3ac+3bc+ab+ac+bc2020abc
Answered by $@ty@m123 last updated on 08/Apr/20
Given 27^a  = 64^b  = 216^c  = 72  27=72^((1/a) ) ...(i)  64=72^(1/b)  ...(ii)  216=72^(1/c)  ...(iii)  ∴ 27×64×216=72^((1/a)+(1/b)+(1/c))   ⇒3^3 ×2^6 ×(2×3)^3 =(3^2 ×2^3 )^m  {where m=(1/a)+(1/b)+(1/c)  ⇒3^6 ×2^9 =3^(2m) ×2^(3m)   ⇒m=3 ...(iii)  The given expression  ((2020)/3)×(1/m)+(m/(2020))  =((2020)/9)+(3/(2020))  =224((8107)/(18180))
Given27a=64b=216c=7227=721a(i)64=721b(ii)216=721c(iii)27×64×216=721a+1b+1c33×26×(2×3)3=(32×23)m{wherem=1a+1b+1c36×29=32m×23mm=3(iii)Thegivenexpression20203×1m+m2020=20209+32020=224810718180
Commented by john santu last updated on 08/Apr/20
same. but i don′t understand   why the answer (1/3)?
same.butidontunderstandwhytheanswer13?

Leave a Reply

Your email address will not be published. Required fields are marked *