Menu Close

Given-2log-5-x-2-log-5-y-1-2-0-log-5-x-2-2x-2-0-find-the-value-of-y-




Question Number 105994 by bemath last updated on 02/Aug/20
Given  { ((2log _5 (x+2)−log _5 (y)+(1/2)=0)),((log _5 (x^2 +2x−2)=0 )) :}  find the value of y
Given{2log5(x+2)log5(y)+12=0log5(x2+2x2)=0findthevalueofy
Commented by PRITHWISH SEN 2 last updated on 02/Aug/20
x^2 +2x−2=1⇒x=1,−3  (((x+2)^2 )/y) =(1/( (√5))) ⇒x=1,y=9(√5),  x=−3, y= (√5)  (x,y) = (1,9(√5)),(−3,(√5))
x2+2x2=1x=1,3(x+2)2y=15x=1,y=95,x=3,y=5(x,y)=(1,95),(3,5)
Answered by bobhans last updated on 02/Aug/20
(1) x^2 +2x−2=1 ⇒ x^2 +2x−3=0 ∧x>−2  ⇒(x+3)(x−1)=0⇒x=1, x=−3(rejected)  (2) 2log _5 (x+2)−log _5 (y)=−(1/2)  log _5 ((((x+2)^2 )/y))=log _5 ((1/( (√5))))  → y = (√5) (x+2)^2  = 9(√5) = ■
(1)x2+2x2=1x2+2x3=0x>2(x+3)(x1)=0x=1,x=3(rejected)(2)2log5(x+2)log5(y)=12log5((x+2)2y)=log5(15)y=5(x+2)2=95=◼

Leave a Reply

Your email address will not be published. Required fields are marked *