Question Number 50970 by peter frank last updated on 22/Dec/18
$${Given}\:\mathrm{3}−\mathrm{2}{i}\:{and}\:\mathrm{1}+{i} \\ $$$${are}\:{the}\:{two}\:{of}\:{roots}\:{of} \\ $$$${the}\:{equation} \\ $$$${ax}^{\mathrm{4}} +{bx}^{\mathrm{3}} +{cx}^{\mathrm{3}} +{dx}+{e} \\ $$$${find}\:{the}\:{values}\:{of} \\ $$$${a},{b},{c},{d}\:{and}\:{e} \\ $$
Answered by peter frank last updated on 23/Dec/18
$${let}\:{z}_{\mathrm{1}\:} =\mathrm{3}−\mathrm{2}{i}\:\:{z}_{\mathrm{2}\:} =\mathrm{1}+{i} \\ $$$$\overset{−} {{z}}_{\mathrm{1}\:\:} =\mathrm{3}+\mathrm{2}{i}\:\:\:\:\:\overset{−} {{z}}_{\mathrm{2}} =\mathrm{1}−{i} \\ $$$${x}^{\mathrm{2}} −\left(\mathrm{3}+\mathrm{2}{i}+\mathrm{3}−\mathrm{2}{i}\right){x}+\left(\mathrm{3}+\mathrm{2}{i}\right)\left(\mathrm{3}−\mathrm{2}{i}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{13}=\mathrm{0}\:\:\:\:……\left({i}\right) \\ $$$${the}\:{same}\:{way} \\ $$$${x}^{\mathrm{2}} −\left(\mathrm{1}+{i}+\mathrm{1}−{i}\right){x}+\left(\mathrm{1}+{i}\right)\left(\mathrm{1}−{i}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}=\mathrm{0} \\ $$$${multiply}\:\left({i}\right)\:×\left({ii}\right) \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{13}\right)\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{4}} −\mathrm{8}{x}^{\mathrm{3}} +\mathrm{27}{x}^{\mathrm{2}} −\mathrm{38}{x}+\mathrm{26}=\mathrm{0}…..\left({iii}\right) \\ $$$$\downarrow \\ $$$${ax}^{\mathrm{4}} +{bx}^{\mathrm{3}} +{cx}^{\mathrm{2}} +{dx}+\mathrm{26} \\ $$$${a}=\mathrm{1}\:\:{b}=−\mathrm{8}\:\:\:{c}=\mathrm{27}\:\:\:{d}=−\mathrm{38} \\ $$$${e}=\mathrm{26} \\ $$$$ \\ $$