Menu Close

Given-3xf-1-x-f-x-2x-2-and-f-3-f-9-f-a-three-first-term-in-AP-respectively-Find-the-value-of-a-




Question Number 128942 by bramlexs22 last updated on 11/Jan/21
 Given : 3xf((1/x))+f(x)=2x+2   and f(3), f(9) , f(a) three first  term in AP respectively. Find   the value of a ?
Given:3xf(1x)+f(x)=2x+2andf(3),f(9),f(a)threefirstterminAPrespectively.Findthevalueofa?
Answered by liberty last updated on 11/Jan/21
 (1) 3xf((1/x))+f(x)=2x+2  (2)(3/x)f(x)+f((1/x))=(2/x)+2       3f(x)+xf((1/x))=2+2x       9f(x)+3xf((1/x))=6x+6        substract (2)&(1)       8f(x)=4x+4 ; f(x)=((x+1)/2)       then  { ((f(3)=2 ; f(9)=5)),((f(a)=((a+1)/2))) :}   since f(3), f(9),f(a) in AP   ⇔ 2f(9)=f(3)+f(a)         ((a+1)/2) = 10−2=8         a+1=16 ⇒a=15
(1)3xf(1x)+f(x)=2x+2(2)3xf(x)+f(1x)=2x+23f(x)+xf(1x)=2+2x9f(x)+3xf(1x)=6x+6substract(2)&(1)8f(x)=4x+4;f(x)=x+12then{f(3)=2;f(9)=5f(a)=a+12sincef(3),f(9),f(a)inAP2f(9)=f(3)+f(a)a+12=102=8a+1=16a=15
Answered by mathmax by abdo last updated on 11/Jan/21
3xf((1/x))+f(x)=2x+2 ⇒(3/x)f(x)+f((1/x))=(2/x) +2 ⇒ { ((f(x)+3xf((1/x))=2x+2)),(((3/x)f(x)+f((1/x))=(2/x)+2)) :}  Δ_s = determinant (((1        3x)),(((3/x)         1)))=1−9=−8≠0 ⇒f(x)=( determinant (((2x+2         3x)),(((2/x)+2          1)))/(−8))  =−(1/8)(2x+2−3x((2/x)+2)) =−(1/8)(2x+2−6−6x)=((4x+4)/8)=((x+1)/2)  f(3),f(9) and f(a) are in a.p ⇒f(3)+f(a)=2f(9) ⇒  2+((a+1)/2)=10 ⇒4+a+1 =20 ⇒a=20−5=15
3xf(1x)+f(x)=2x+23xf(x)+f(1x)=2x+2{f(x)+3xf(1x)=2x+23xf(x)+f(1x)=2x+2Δs=|13x3x1|=19=80f(x)=|2x+23x2x+21|8=18(2x+23x(2x+2))=18(2x+266x)=4x+48=x+12f(3),f(9)andf(a)areina.pf(3)+f(a)=2f(9)2+a+12=104+a+1=20a=205=15

Leave a Reply

Your email address will not be published. Required fields are marked *