Menu Close

Given-3xf-1-x-f-x-2x-2-and-f-3-f-9-f-a-three-first-term-in-AP-respectively-Find-the-value-of-a-




Question Number 128942 by bramlexs22 last updated on 11/Jan/21
 Given : 3xf((1/x))+f(x)=2x+2   and f(3), f(9) , f(a) three first  term in AP respectively. Find   the value of a ?
$$\:\mathrm{Given}\::\:\mathrm{3}{xf}\left(\frac{\mathrm{1}}{{x}}\right)+{f}\left({x}\right)=\mathrm{2}{x}+\mathrm{2}\: \\ $$$${and}\:{f}\left(\mathrm{3}\right),\:\mathrm{f}\left(\mathrm{9}\right)\:,\:\mathrm{f}\left(\mathrm{a}\right)\:\mathrm{three}\:\mathrm{first} \\ $$$$\mathrm{term}\:\mathrm{in}\:\mathrm{AP}\:\mathrm{respectively}.\:\mathrm{Find} \\ $$$$\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{a}\:?\: \\ $$
Answered by liberty last updated on 11/Jan/21
 (1) 3xf((1/x))+f(x)=2x+2  (2)(3/x)f(x)+f((1/x))=(2/x)+2       3f(x)+xf((1/x))=2+2x       9f(x)+3xf((1/x))=6x+6        substract (2)&(1)       8f(x)=4x+4 ; f(x)=((x+1)/2)       then  { ((f(3)=2 ; f(9)=5)),((f(a)=((a+1)/2))) :}   since f(3), f(9),f(a) in AP   ⇔ 2f(9)=f(3)+f(a)         ((a+1)/2) = 10−2=8         a+1=16 ⇒a=15
$$\:\left(\mathrm{1}\right)\:\mathrm{3xf}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)+\mathrm{f}\left(\mathrm{x}\right)=\mathrm{2x}+\mathrm{2} \\ $$$$\left(\mathrm{2}\right)\frac{\mathrm{3}}{\mathrm{x}}\mathrm{f}\left(\mathrm{x}\right)+\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)=\frac{\mathrm{2}}{\mathrm{x}}+\mathrm{2} \\ $$$$\:\:\:\:\:\mathrm{3f}\left(\mathrm{x}\right)+\mathrm{xf}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)=\mathrm{2}+\mathrm{2x} \\ $$$$\:\:\:\:\:\mathrm{9f}\left(\mathrm{x}\right)+\mathrm{3xf}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)=\mathrm{6x}+\mathrm{6} \\ $$$$\:\:\:\:\:\:\mathrm{substract}\:\left(\mathrm{2}\right)\&\left(\mathrm{1}\right) \\ $$$$\:\:\:\:\:\mathrm{8f}\left(\mathrm{x}\right)=\mathrm{4x}+\mathrm{4}\:;\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{x}+\mathrm{1}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\mathrm{then}\:\begin{cases}{\mathrm{f}\left(\mathrm{3}\right)=\mathrm{2}\:;\:\mathrm{f}\left(\mathrm{9}\right)=\mathrm{5}}\\{\mathrm{f}\left(\mathrm{a}\right)=\frac{\mathrm{a}+\mathrm{1}}{\mathrm{2}}}\end{cases} \\ $$$$\:\mathrm{since}\:\mathrm{f}\left(\mathrm{3}\right),\:\mathrm{f}\left(\mathrm{9}\right),\mathrm{f}\left(\mathrm{a}\right)\:\mathrm{in}\:\mathrm{AP} \\ $$$$\:\Leftrightarrow\:\mathrm{2f}\left(\mathrm{9}\right)=\mathrm{f}\left(\mathrm{3}\right)+\mathrm{f}\left(\mathrm{a}\right) \\ $$$$\:\:\:\:\:\:\:\frac{\mathrm{a}+\mathrm{1}}{\mathrm{2}}\:=\:\mathrm{10}−\mathrm{2}=\mathrm{8} \\ $$$$\:\:\:\:\:\:\:\mathrm{a}+\mathrm{1}=\mathrm{16}\:\Rightarrow\mathrm{a}=\mathrm{15} \\ $$
Answered by mathmax by abdo last updated on 11/Jan/21
3xf((1/x))+f(x)=2x+2 ⇒(3/x)f(x)+f((1/x))=(2/x) +2 ⇒ { ((f(x)+3xf((1/x))=2x+2)),(((3/x)f(x)+f((1/x))=(2/x)+2)) :}  Δ_s = determinant (((1        3x)),(((3/x)         1)))=1−9=−8≠0 ⇒f(x)=( determinant (((2x+2         3x)),(((2/x)+2          1)))/(−8))  =−(1/8)(2x+2−3x((2/x)+2)) =−(1/8)(2x+2−6−6x)=((4x+4)/8)=((x+1)/2)  f(3),f(9) and f(a) are in a.p ⇒f(3)+f(a)=2f(9) ⇒  2+((a+1)/2)=10 ⇒4+a+1 =20 ⇒a=20−5=15
$$\mathrm{3xf}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)+\mathrm{f}\left(\mathrm{x}\right)=\mathrm{2x}+\mathrm{2}\:\Rightarrow\frac{\mathrm{3}}{\mathrm{x}}\mathrm{f}\left(\mathrm{x}\right)+\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)=\frac{\mathrm{2}}{\mathrm{x}}\:+\mathrm{2}\:\Rightarrow\begin{cases}{\mathrm{f}\left(\mathrm{x}\right)+\mathrm{3xf}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)=\mathrm{2x}+\mathrm{2}}\\{\frac{\mathrm{3}}{\mathrm{x}}\mathrm{f}\left(\mathrm{x}\right)+\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)=\frac{\mathrm{2}}{\mathrm{x}}+\mathrm{2}}\end{cases} \\ $$$$\Delta_{\mathrm{s}} =\begin{vmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\mathrm{3x}}\\{\frac{\mathrm{3}}{\mathrm{x}}\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{vmatrix}=\mathrm{1}−\mathrm{9}=−\mathrm{8}\neq\mathrm{0}\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\frac{\begin{vmatrix}{\mathrm{2x}+\mathrm{2}\:\:\:\:\:\:\:\:\:\mathrm{3x}}\\{\frac{\mathrm{2}}{\mathrm{x}}+\mathrm{2}\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{vmatrix}}{−\mathrm{8}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{8}}\left(\mathrm{2x}+\mathrm{2}−\mathrm{3x}\left(\frac{\mathrm{2}}{\mathrm{x}}+\mathrm{2}\right)\right)\:=−\frac{\mathrm{1}}{\mathrm{8}}\left(\mathrm{2x}+\mathrm{2}−\mathrm{6}−\mathrm{6x}\right)=\frac{\mathrm{4x}+\mathrm{4}}{\mathrm{8}}=\frac{\mathrm{x}+\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{f}\left(\mathrm{3}\right),\mathrm{f}\left(\mathrm{9}\right)\:\mathrm{and}\:\mathrm{f}\left(\mathrm{a}\right)\:\mathrm{are}\:\mathrm{in}\:\mathrm{a}.\mathrm{p}\:\Rightarrow\mathrm{f}\left(\mathrm{3}\right)+\mathrm{f}\left(\mathrm{a}\right)=\mathrm{2f}\left(\mathrm{9}\right)\:\Rightarrow \\ $$$$\mathrm{2}+\frac{\mathrm{a}+\mathrm{1}}{\mathrm{2}}=\mathrm{10}\:\Rightarrow\mathrm{4}+\mathrm{a}+\mathrm{1}\:=\mathrm{20}\:\Rightarrow\mathrm{a}=\mathrm{20}−\mathrm{5}=\mathrm{15} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *