Menu Close

Given-4cos-2-x-sin-x-2sin-2-x-3sin-x-where-pi-2-x-pi-2-Find-the-sum-of-all-posibble-value-of-x-




Question Number 130047 by liberty last updated on 22/Jan/21
 Given 4cos^2 x sin x−2sin^2 x = 3sin x  where −(π/2)≤x≤(π/2) . Find the sum of  all posibble value of x.
Given4cos2xsinx2sin2x=3sinxwhereπ2xπ2.Findthesumofallposibblevalueofx.
Answered by MJS_new last updated on 22/Jan/21
sin x =s ⇒ cos^2  x =1−s^2   (s^2 +(s/2)−(1/4))s=0  ⇒ s=0∨s=−(1/4)±((√5)/4)  ⇒ x=0∨x=−((3π)/(10))∨x=(π/(10))  ⇒ answer is −(π/5)
sinx=scos2x=1s2(s2+s214)s=0s=0s=14±54x=0x=3π10x=π10answerisπ5
Answered by Alepro3 last updated on 22/Jan/21
  cos^2 x=1−sin^2 x  ⇒  4sin x−4sin^3 x−2sin^2 x=3sin x  ⇒  sin x(4sin^2 x+2sin x−sin x)=0  ⇒  one solution is sin x=0  ⇒  x=kπ  solving the 2^(nd) degree equation we have  sin x_(1,2) =(−2±(√(4+16)))/8=(−1±(√5))/4  so x_(1,2) =sin^(−1) [(−1±(√5))/4]+2kπ  and  x_(3,4) =π−sin^(−1) [[(1−(√5))/4]+2kπ  ⇒  the sum of all of this value of x is  Σx=π+5kπ
cos2x=1sin2x4sinx4sin3x2sin2x=3sinxsinx(4sin2x+2sinxsinx)=0onesolutionissinx=0x=kπsolvingthe2nddegreeequationwehavesinx1,2=(2±4+16)/8=(1±5)/4sox1,2=sin1[(1±5)/4]+2kπandx3,4=πsin1[[(15)/4]+2kπthesumofallofthisvalueofxisΣx=π+5kπ

Leave a Reply

Your email address will not be published. Required fields are marked *