Menu Close

Given-4x-2-4x-2-1-y-4y-2-4y-2-1-z-4z-2-4z-2-1-x-find-x-y-z-




Question Number 105448 by bemath last updated on 29/Jul/20
Given  { ((((4x^2 )/(4x^2 +1)) = y)),((((4y^2 )/(4y^2 +1)) = z)),((((4z^2 )/(4z^2 +1)) = x)) :}   . find  x+y+z ?
Given{4x24x2+1=y4y24y2+1=z4z24z2+1=x.findx+y+z?
Commented by john santu last updated on 29/Jul/20
 (1/x)+(1/y)+(1/z)= ((4x^2 +1)/(4x^2 ))+((4y^2 +1)/(4y^2 ))+((4z^2 +1)/(4z^2 ))  (1/x)+(1/y)+(1/z)= 3+(1/(4x^2 ))+(1/(4y^2 ))+(1/(4z^2 ))  (1/x)+(1/y)+(1/z)=3+((1/(2x)))^2 +((1/(2y)))^2 +((1/(2z)))^2   (1/x)+(1/y)+(1/z)=3+(1/4){((1/x))^2 +((1/y))^2 +((1/z))^2 }   { ((set (1/x)=a, (1/y)=b, (1/z)=c  {: (),() })) :}  ⇔ a+b+c = 3 +(1/4){(a+b+c)^2 −2(ab+ac+bc)}
1x+1y+1z=4x2+14x2+4y2+14y2+4z2+14z21x+1y+1z=3+14x2+14y2+14z21x+1y+1z=3+(12x)2+(12y)2+(12z)21x+1y+1z=3+14{(1x)2+(1y)2+(1z)2}{set1x=a,1y=b,1z=c}a+b+c=3+14{(a+b+c)22(ab+ac+bc)}
Commented by behi83417@gmail.com last updated on 29/Jul/20
x=y=z=0 and:4x^2 −4x+1=0⇒x=y=z=(1/2)  if:x≠y≠z≠0⇒x=(1/(2a)),y=(1/(2b)),z=(1/(2c))⇒   { ((((4.(1/(4a^2 )))/(4.(1/(4a^2 ))+1))=(1/(2b))⇒ { (((1/(1+a^2 ))=(1/(2b)))),(((1/(1+b^2 ))=(1/(2c))⇒)) :})),() :}  ⇒ { ((a^2 +1=2b)),((b^2 +1=2c)),((c^2 +1=2a)) :}⇒(a−1)^2 +(b−1)^2 +(c−1)^2 =0  ⇒a=b=c=1⇒x=y=z=(1/2)
x=y=z=0and:4x24x+1=0x=y=z=12if:xyz0x=12a,y=12b,z=12c{4.14a24.14a2+1=12b{11+a2=12b11+b2=12c{a2+1=2bb2+1=2cc2+1=2a(a1)2+(b1)2+(c1)2=0a=b=c=1x=y=z=12
Answered by ajfour last updated on 29/Jul/20
let   (1/x)=p   ,  (1/y)=q  ,  (1/z)=r  ⇒  (4/(4−p^2 ))=(1/q) ,   (4/(4((q/p))^2 +q^2 ))= (1/r) ,        (4/(4+r^2 ))=(1/p)  ⇒  4−p^2 =4q    ...(i)   4((q/p))^2 +q^2 =4r  ⇒  q^2 ((1/p^2 )+(1/4))=r   ..(ii)         4+r^2 =4p       ...(iii)  ⇒   (1−(p^2 /4))^2 ((1/p^2 )+(1/4))^2 =4(p−1)  ⇒    (16−p^4 )^2 =64×16p^4 (p−1)  ......degree 8
let1x=p,1y=q,1z=r44p2=1q,44(qp)2+q2=1r,44+r2=1p4p2=4q(i)4(qp)2+q2=4rq2(1p2+14)=r..(ii)4+r2=4p(iii)(1p24)2(1p2+14)2=4(p1)(16p4)2=64×16p4(p1)degree8
Answered by bramlex last updated on 29/Jul/20
(1/y) = ((4x^2 +1)/(4x^2 )) →(1/y) = 1+(1/(4x^2 ))  →(1/z) = 1+(1/4)(1+(1/(4x^2 )))^2   →1+(1/(4z^2 )) = (1/x)  →1+(1/4){1+(1/4)(1+(1/(4x^2 )))^2 }= (1/x)  set (1/x) = m   1+(1/4){1+(1/4)(1+(1/4)m^2 )^2 } = m   (5/4)+(1/4)(1+(1/2)m^2 +(1/(16))m^4 )=m  20+4+2m^2 +(1/4)m^4 =16m  m^4 +32m^2 −256m+16×24=0
1y=4x2+14x21y=1+14x21z=1+14(1+14x2)21+14z2=1x1+14{1+14(1+14x2)2}=1xset1x=m1+14{1+14(1+14m2)2}=m54+14(1+12m2+116m4)=m20+4+2m2+14m4=16mm4+32m2256m+16×24=0
Answered by 1549442205PVT last updated on 07/Aug/20
WLOG suppose that x≥y≥z≥0 (1).Then  ((4z^2 )/(4z^2 +1))≥((4x^2 )/(4x^2 +1))≥((4y^2 )/(4y^2 +1))≥0  ⇒(z^2 /(4z^2 +1))≥(x^2 /(4x^2 +1))⇒z^2 (4x^2 +1)≥x^2 (4z^2 +1)  ⇒z^2 ≥x^2 ⇒z≥x≥0(2).From (1) and(2)  we get x=y=z.Hence  ((4x^2 )/(4x^2 +1))=x⇔4x^3 −4x^2 +x=0  ⇔x(4x^2 −4x+1)=0.⇔x(2x−1)^2 =0  ⇔x∈{0;(1/2)}  Thus,the roots of the given system are:  {(0;0);((1/2);(1/2))}
WLOGsupposethatxyz0(1).Then4z24z2+14x24x2+14y24y2+10z24z2+1x24x2+1z2(4x2+1)x2(4z2+1)z2x2zx0(2).From(1)and(2)wegetx=y=z.Hence4x24x2+1=x4x34x2+x=0x(4x24x+1)=0.x(2x1)2=0x{0;12}Thus,therootsofthegivensystemare:{(0;0);(12;12)}
Commented by behi83417@gmail.com last updated on 31/Jul/20
sir 154! there is a typo in line#5 from end.
You can't use 'macro parameter character #' in math mode
Commented by 1549442205PVT last updated on 01/Aug/20
Thank Sir.I understanded and shall   correct it
ThankSir.Iunderstandedandshallcorrectit

Leave a Reply

Your email address will not be published. Required fields are marked *