Menu Close

given-5x-12y-60-min-value-of-x-2-y-2-




Question Number 103040 by bobhans last updated on 12/Jul/20
given 5x+12y = 60  min value of (√(x^2 +y^2 ))
given5x+12y=60minvalueofx2+y2
Answered by bobhans last updated on 12/Jul/20
Commented by mathmax by abdo last updated on 12/Jul/20
error sir  (∂f/∂λ)=5x +2y−60 !
errorsirfλ=5x+2y60!
Commented by bemath last updated on 12/Jul/20
the equation 5x+12y−60=0 sir  it typo
theequation5x+12y60=0sirittypo
Answered by ajfour last updated on 12/Jul/20
let x=rcos θ , y=rsin θ  ⇒   r=(√(x^2 +y^2 ))     13(((5x)/(13))+((12y)/(13)))=60  {if   sin α=(5/(13)) ,  cos α=((12)/(13))  ⇒     tan α=(5/(12)) }    13r(sin αcos θ+cos αsin θ)=60  ⇒  13rsin (α+θ)=60  ⇒    r=((60)/(13sin(α+θ)))  and  as  r>0    ⇒  r_(min) =((60)/(13))  when  θ=2nπ+(π/2)−tan^(−1) (5/(12))  .
letx=rcosθ,y=rsinθr=x2+y213(5x13+12y13)=60{ifsinα=513,cosα=1213tanα=512}13r(sinαcosθ+cosαsinθ)=6013rsin(α+θ)=60r=6013sin(α+θ)andasr>0rmin=6013whenθ=2nπ+π2tan1512.
Answered by maths mind last updated on 12/Jul/20
M(x,y)∈(D): 5x+12y−60=0  (√(x^2 +y^2 ))=d(O,M)  min d(O,M)=d(O,M′)  M′ ptojection of O over (d)  d(0,M′)=((∣0.5+12.0−60∣)/( (√(5^2 +12^2 ))))=((60)/(13))
M(x,y)(D):5x+12y60=0x2+y2=d(O,M)mind(O,M)=d(O,M)MptojectionofOover(d)d(0,M)=0.5+12.06052+122=6013
Answered by mr W last updated on 12/Jul/20
say (√(x^2 +y^2 ))=D  x^2 +y^2 =D^2   x^2 +(5−((5x)/(12)))^2 =D^2   ((169)/(144))x^2 −((50)/(12))x+25−D^2 =0  Δ=(((50)/(12)))^2 −4×((169)/(144))(25−D^2 )=0  D^2 =((3600)/(169))  ⇒D=((60)/(13))
sayx2+y2=Dx2+y2=D2x2+(55x12)2=D2169144x25012x+25D2=0Δ=(5012)24×169144(25D2)=0D2=3600169D=6013
Answered by 1549442205 last updated on 13/Jul/20
Apply Cauchy−Shward we have  60^2 =(5x+12y)^2 ≤(5^2 +12^2 )(x^2 +y^2 )  ⇒x^2 +y^2 ≥((60^2 )/(5^2 +12^2 ))=((60^2 )/(13^2 ))⇒(√(x^2 +y^2 ))≥((60)/(13))  the equality ocurrs if and only if   { (((x/5)=(y/(12)))),((5x+12y=60)) :}⇔ { ((x=((300)/(169)))),((y=((720)/(169)))) :}  Thus,(√(x^2 +y^2 )) has the smallest value  equal ((60)/(13)) when (x,y)=(((300)/(169));((720)/(169)))
ApplyCauchyShwardwehave602=(5x+12y)2(52+122)(x2+y2)x2+y260252+122=602132x2+y26013theequalityocurrsifandonlyif{x5=y125x+12y=60{x=300169y=720169Thus,x2+y2hasthesmallestvalueequal6013when(x,y)=(300169;720169)

Leave a Reply

Your email address will not be published. Required fields are marked *