Menu Close

Given-5x-3y-6-find-min-value-of-x-1-2-y-1-2-




Question Number 99003 by bramlex last updated on 18/Jun/20
Given 5x−3y=6 . find min value  of (x−1)^2 +(y+1)^2  ?
Given5x3y=6.findminvalueof(x1)2+(y+1)2?
Answered by bobhans last updated on 18/Jun/20
let (x−1)^2 +(y+1)^2 =R^2   min {(x−1)^2 +(y+1)^2 } if 5x−3y = 6 is  tangent line of a circle .  min value = R^2  =((∣5.1−3.(−1)−6∣^2 )/(25+9))  = (4/(34)) = (2/(17)) ■
let(x1)2+(y+1)2=R2min{(x1)2+(y+1)2}if5x3y=6istangentlineofacircle.minvalue=R2=5.13.(1)6225+9=434=217◼
Commented by bramlex last updated on 18/Jun/20
thank you
thankyou
Answered by 1549442205 last updated on 18/Jun/20
5(x−1)−3(y+1)=−2.ApplyingAM−GM  we get (−2)^2 ≤(5^2 +(−3)^2 )[(x−1)^2 +(y+1)^2 ]  ⇒(x−1)^2 +(y+1)^2 ≥(4/(34))=(2/(17)).The equality occurs  when  { (((5/(x−1))=((−3)/(y+1)))),((5x−3y=6)) :}⇔ { ((3x+5y=−2)),((5x−3y=6)) :}⇔ { ((x=((12)/(17)))),((y=((−14)/(17)))) :}  Hence,S=(x−1)^2 +(y+1)^2  has the least value equal to  (2/(34))  when  { ((x=((12)/(17)))),((y=((−14)/(17)))) :}
5(x1)3(y+1)=2.ApplyingAMGMweget(2)2(52+(3)2)[(x1)2+(y+1)2](x1)2+(y+1)2434=217.Theequalityoccurswhen{5x1=3y+15x3y=6{3x+5y=25x3y=6{x=1217y=1417Hence,S=(x1)2+(y+1)2hastheleastvalueequalto234when{x=1217y=1417
Commented by bemath last updated on 18/Jun/20
the last line (2/(34)) or (2/(17)) or (4/(34)) ?
thelastline234or217or434?
Commented by 1549442205 last updated on 18/Jun/20
Excuse me,thank sir you,I wrote a mistake  it is (2/(17))
Excuseme,thanksiryou,Iwroteamistakeitis217
Answered by MJS last updated on 18/Jun/20
why you folks do such complicated things?  5x−3y=6 ⇒ y=(5/3)x−2  (x−1)^2 +(y+1)^2 =((34)/9)x^2 −((16)/3)x+2  (d/dx)[((34)/9)x^2 −((16)/3)x+2]=0  ((68)/9)x−((16)/3)=0  x=((12)/(17))  (d/dx)[((68)/9)x−((16)/3)]>0 ⇒ minimum  ((34)/9)x^2 −((16)/3)x+2=(2/(17))
whyyoufolksdosuchcomplicatedthings?5x3y=6y=53x2(x1)2+(y+1)2=349x2163x+2ddx[349x2163x+2]=0689x163=0x=1217ddx[689x163]>0minimum349x2163x+2=217
Commented by bramlex last updated on 18/Jun/20
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *