Menu Close

Given-80-a-5-and-80-b-2-then-25-1-a-2b-1-a-4b-




Question Number 180014 by cortano1 last updated on 06/Nov/22
  Given 80^a  = 5 and 80^b  = 2   then 25^((1−a−2b)/(1+a−4b))  =?
Given80a=5and80b=2then251a2b1+a4b=?
Answered by srikanth2684 last updated on 06/Nov/22
25^((ln_(80) 80−ln_(80) 5−2ln_(80) 2)/(ln_(80) 80+ln_(80) 5−4ln_(80) 2))   =25^((ln_(80) ((80)/(5×4)))/(ln_(80) ((80×5)/(16)))) =25^((ln_(80) 2^2 )/(ln_(80) 5^2 ))   =(5^2 )^(ln_5^2  2^2 ) =4
25ln8080ln8052ln802ln8080+ln8054ln802=25ln80805×4ln8080×516=25ln8022ln8052=(52)ln5222=4
Commented by cortano1 last updated on 06/Nov/22
yes.
yes.
Answered by a.lgnaoui last updated on 06/Nov/22
80^a =5     a×log80=log5        a=((log5)/(log5+4log2))  80^b =2    b×log80=log2    b=((log2)/(log5+4log2))    =25^((1−a−2b)/(1+a−4b)) =25^((1−((log5)/(log5+4log2))− ((2log2)/(log5+4log2)))/(1+((log5)/(log5+4log2))−((4log2)/(log5+4log2))))                      =25^((log5+4log2−log5−2log2)/(log5+4log2+log5−4log2))                        =25^((log2)/(log5))      ((log2)/(log5))×2log5=2log2     finaly:         25^((1−a−2b)/(1+a−4b)) =e^(2log2)
80a=5a×log80=log5a=log5log5+4log280b=2b×log80=log2b=log2log5+4log2=251a2b1+a4b=251log5log5+4log22log2log5+4log21+log5log5+4log24log2log5+4log2=25log5+4log2log52log2log5+4log2+log54log2=25log2log5log2log5×2log5=2log2finaly:251a2b1+a4b=e2log2
Commented by a.lgnaoui last updated on 06/Nov/22
e^(2log2)  is synonyme of   25^((log2)/(log5)) =4
e2log2issynonymeof25log2log5=4
Commented by a.lgnaoui last updated on 06/Nov/22
log2=log_e 2=((log2)/(loge))=((log2)/1)
log2=loge2=log2loge=log21
Commented by a.lgnaoui last updated on 06/Nov/22
Resultat: 4
Resultat:4
Commented by cortano1 last updated on 06/Nov/22
log 2= log _e (2)) ?
log2=loge(2))?

Leave a Reply

Your email address will not be published. Required fields are marked *