Menu Close

Given-80-a-5-and-80-b-2-then-25-1-a-2b-1-a-4b-




Question Number 180014 by cortano1 last updated on 06/Nov/22
  Given 80^a  = 5 and 80^b  = 2   then 25^((1−a−2b)/(1+a−4b))  =?
$$\:\:\mathrm{Given}\:\mathrm{80}^{{a}} \:=\:\mathrm{5}\:\mathrm{and}\:\mathrm{80}^{{b}} \:=\:\mathrm{2} \\ $$$$\:\mathrm{then}\:\mathrm{25}^{\frac{\mathrm{1}−{a}−\mathrm{2}{b}}{\mathrm{1}+{a}−\mathrm{4}{b}}} \:=?\: \\ $$
Answered by srikanth2684 last updated on 06/Nov/22
25^((ln_(80) 80−ln_(80) 5−2ln_(80) 2)/(ln_(80) 80+ln_(80) 5−4ln_(80) 2))   =25^((ln_(80) ((80)/(5×4)))/(ln_(80) ((80×5)/(16)))) =25^((ln_(80) 2^2 )/(ln_(80) 5^2 ))   =(5^2 )^(ln_5^2  2^2 ) =4
$$\mathrm{25}^{\frac{\mathrm{ln}_{\mathrm{80}} \mathrm{80}−\mathrm{ln}_{\mathrm{80}} \mathrm{5}−\mathrm{2ln}_{\mathrm{80}} \mathrm{2}}{\mathrm{ln}_{\mathrm{80}} \mathrm{80}+\mathrm{ln}_{\mathrm{80}} \mathrm{5}−\mathrm{4ln}_{\mathrm{80}} \mathrm{2}}} \\ $$$$=\mathrm{25}^{\frac{\mathrm{ln}_{\mathrm{80}} \frac{\mathrm{80}}{\mathrm{5}×\mathrm{4}}}{\mathrm{ln}_{\mathrm{80}} \frac{\mathrm{80}×\mathrm{5}}{\mathrm{16}}}} =\mathrm{25}^{\frac{\mathrm{ln}_{\mathrm{80}} \mathrm{2}^{\mathrm{2}} }{\mathrm{ln}_{\mathrm{80}} \mathrm{5}^{\mathrm{2}} }} \\ $$$$=\left(\mathrm{5}^{\mathrm{2}} \right)^{{ln}_{\mathrm{5}^{\mathrm{2}} } \mathrm{2}^{\mathrm{2}} } =\mathrm{4} \\ $$
Commented by cortano1 last updated on 06/Nov/22
yes.
$$\mathrm{yes}.\: \\ $$
Answered by a.lgnaoui last updated on 06/Nov/22
80^a =5     a×log80=log5        a=((log5)/(log5+4log2))  80^b =2    b×log80=log2    b=((log2)/(log5+4log2))    =25^((1−a−2b)/(1+a−4b)) =25^((1−((log5)/(log5+4log2))− ((2log2)/(log5+4log2)))/(1+((log5)/(log5+4log2))−((4log2)/(log5+4log2))))                      =25^((log5+4log2−log5−2log2)/(log5+4log2+log5−4log2))                        =25^((log2)/(log5))      ((log2)/(log5))×2log5=2log2     finaly:         25^((1−a−2b)/(1+a−4b)) =e^(2log2)
$$\mathrm{80}^{{a}} =\mathrm{5}\:\:\:\:\:{a}×\mathrm{log80}=\mathrm{log5}\:\:\:\:\:\:\:\:\mathrm{a}=\frac{\mathrm{log5}}{\mathrm{log5}+\mathrm{4log2}} \\ $$$$\mathrm{80}^{\mathrm{b}} =\mathrm{2}\:\:\:\:\mathrm{b}×\mathrm{log80}=\mathrm{log2}\:\:\:\:\mathrm{b}=\frac{\mathrm{log2}}{\mathrm{log5}+\mathrm{4log2}} \\ $$$$ \\ $$$$=\mathrm{25}^{\frac{\mathrm{1}−\mathrm{a}−\mathrm{2b}}{\mathrm{1}+\mathrm{a}−\mathrm{4b}}} =\mathrm{25}^{\frac{\mathrm{1}−\frac{\mathrm{log5}}{\mathrm{log5}+\mathrm{4log2}}−\:\frac{\mathrm{2log2}}{\mathrm{log5}+\mathrm{4log2}}}{\mathrm{1}+\frac{\mathrm{log5}}{\mathrm{log5}+\mathrm{4log2}}−\frac{\mathrm{4log2}}{\mathrm{log5}+\mathrm{4log2}}}} \\ $$$$\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:=\mathrm{25}^{\frac{\mathrm{log5}+\mathrm{4log2}−\mathrm{log5}−\mathrm{2log2}}{\mathrm{log5}+\mathrm{4log2}+\mathrm{log5}−\mathrm{4log2}}} \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:=\mathrm{25}^{\frac{\mathrm{log2}}{\mathrm{log5}}} \\ $$$$\:\:\:\frac{\mathrm{log2}}{\mathrm{log5}}×\mathrm{2log5}=\mathrm{2log2} \\ $$$$\:\:\:\mathrm{finaly}: \\ $$$$\:\:\:\:\:\:\:\mathrm{25}^{\frac{\mathrm{1}−\mathrm{a}−\mathrm{2b}}{\mathrm{1}+\mathrm{a}−\mathrm{4b}}} =\mathrm{e}^{\mathrm{2log2}} \\ $$$$ \\ $$
Commented by a.lgnaoui last updated on 06/Nov/22
e^(2log2)  is synonyme of   25^((log2)/(log5)) =4
$${e}^{\mathrm{2log2}} \:\mathrm{is}\:\mathrm{synonyme}\:\mathrm{of}\:\:\:\mathrm{25}^{\frac{\mathrm{log2}}{\mathrm{log5}}} =\mathrm{4} \\ $$
Commented by a.lgnaoui last updated on 06/Nov/22
log2=log_e 2=((log2)/(loge))=((log2)/1)
$$\mathrm{log2}=\mathrm{log}_{\mathrm{e}} \mathrm{2}=\frac{\mathrm{log2}}{\mathrm{loge}}=\frac{\mathrm{log2}}{\mathrm{1}} \\ $$
Commented by a.lgnaoui last updated on 06/Nov/22
Resultat: 4
$${Resultat}:\:\mathrm{4} \\ $$
Commented by cortano1 last updated on 06/Nov/22
log 2= log _e (2)) ?
$$\left.\mathrm{log}\:\mathrm{2}=\:\mathrm{log}\:_{\mathrm{e}} \left(\mathrm{2}\right)\right)\:? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *