Question Number 184280 by mr W last updated on 04/Jan/23
$$\:\:{Given}\:\begin{cases}{{a}_{\mathrm{0}} =\mathrm{1}}\\{{a}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{3}{a}_{{n}} +\sqrt{\mathrm{5}{a}_{{n}} ^{\mathrm{2}} −\mathrm{4}}\:\right)}\end{cases} \\ $$$$\:\forall{n}\geqslant\mathrm{0}\:,\:{n}\in{I}\: \\ $$$$\:\:{find}\:{a}_{{n}} . \\ $$
Commented by mr W last updated on 04/Jan/23
$${unsolved}\:{old}\:{question} \\ $$
Commented by mr W last updated on 04/Jan/23
$${i}\:{found}\:{finally}\:{a}\:{solution}: \\ $$$${a}_{{n}} =\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\:\mathrm{cosh}\:\left[\left(\mathrm{2}{n}+\mathrm{1}\right)\:\mathrm{cosh}^{−\mathrm{1}} \:\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\:\right] \\ $$$${which}\:{delivers}: \\ $$$${a}_{\mathrm{0}} =\mathrm{1} \\ $$$${a}_{\mathrm{1}} =\mathrm{2} \\ $$$${a}_{\mathrm{2}} =\mathrm{5} \\ $$$${a}_{\mathrm{3}} =\mathrm{13} \\ $$$${a}_{\mathrm{4}} =\mathrm{34} \\ $$$${a}_{\mathrm{5}} =\mathrm{89} \\ $$$$… \\ $$
Commented by mr W last updated on 04/Jan/23
$${more}\:{other}\:{solutions}? \\ $$
Commented by SEKRET last updated on 04/Jan/23
$$\:\:\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} =\:\frac{\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}−\mathrm{1}} \:+\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}+\mathrm{1}} }{\mathrm{3}} \\ $$
Commented by SEKRET last updated on 04/Jan/23
$$\:\:\boldsymbol{\mathrm{a}}_{\mathrm{0}} =\mathrm{1} \\ $$$$\:\:\:\boldsymbol{\mathrm{a}}_{\mathrm{1}} =\:\mathrm{2}\centerdot\mathrm{1}+\mathrm{0} \\ $$$$\:\:\:\boldsymbol{\mathrm{a}}_{\mathrm{2}} =\:\mathrm{2}+\left(\mathrm{2}+\mathrm{1}\right) \\ $$$$\:\:\:\:\boldsymbol{\mathrm{a}}_{\mathrm{3}} =\:\mathrm{5}+\left(\mathrm{5}+\mathrm{2}+\mathrm{1}\right) \\ $$$$\:\boldsymbol{\mathrm{a}}_{\mathrm{4}} =\:\mathrm{13}+\left(\mathrm{13}+\mathrm{5}+\mathrm{2}+\mathrm{1}\right) \\ $$$$\:\:\boldsymbol{\mathrm{a}}_{\mathrm{5}} =\:\mathrm{34}+\:\left(\mathrm{34}+\mathrm{13}+\mathrm{5}+\mathrm{2}+\mathrm{1}\right) \\ $$$$……….. \\ $$$$\:\:\:\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} =\:\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}−\mathrm{1}} +\underset{\boldsymbol{\mathrm{k}}=\mathrm{0}} {\overset{\boldsymbol{\mathrm{n}}−\mathrm{1}} {\sum}}\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{k}}} \\ $$
Commented by SEKRET last updated on 04/Jan/23
$$\:\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} =\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\:\boldsymbol{\mathrm{cosh}}\left(\left(\mathrm{2}\boldsymbol{\mathrm{n}}+\mathrm{1}\right)\boldsymbol{\mathrm{cosh}}^{−\mathrm{1}} \frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\right) \\ $$$$\:\:\:\boldsymbol{\mathrm{a}}_{\mathrm{0}} =\mathrm{1}\:\:\:\:\boldsymbol{\mathrm{a}}_{\mathrm{1}} =\mathrm{2}\:\:\:\:\boldsymbol{\mathrm{a}}_{\mathrm{3}} =\mathrm{13}\:\:\:\:\boldsymbol{\mathrm{a}}_{\mathrm{4}} =\mathrm{34}\:\:\:\:\boldsymbol{\mathrm{a}}_{\mathrm{5}} =\mathrm{89} \\ $$$$\:\boldsymbol{\mathrm{a}}_{\mathrm{6}} \:=\:\mathrm{233}\:\:\:\:\:\boldsymbol{\mathrm{a}}_{\mathrm{7}} =\mathrm{610}\:\:\:\:\:\boldsymbol{\mathrm{a}}_{\mathrm{8}} =\mathrm{1597}\:\: \\ $$$$\:\:\: \\ $$$$ \\ $$
Commented by SEKRET last updated on 04/Jan/23
$$\:\:\boldsymbol{\mathrm{how}}\:\:\boldsymbol{\mathrm{did}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{it}} \\ $$
Commented by mr W last updated on 04/Jan/23
$${thanks}! \\ $$$${but}\:{the}\:{question}\:{asks}\:{for}\:{a}_{{n}} \:{in} \\ $$$${explicit}\:{form}.\:{recursive}\:{form}\:{is} \\ $$$${already}\:{given}\:{in}\:{the}\:{question}. \\ $$
Commented by SEKRET last updated on 04/Jan/23
$$\boldsymbol{\mathrm{right}} \\ $$
Commented by Frix last updated on 04/Jan/23
$$\mathrm{It}'\mathrm{s}\:\mathrm{each}\:\mathrm{2nd}\:\mathrm{Fibonacci}−\mathrm{Number}\:\Rightarrow \\ $$$${a}_{{n}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{2}{n}+\mathrm{1}} −\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{2}{n}+\mathrm{1}} \right) \\ $$
Commented by mr W last updated on 04/Jan/23
$${how}\:{did}\:{you}\:{get}\:{this}? \\ $$
Commented by manxsol last updated on 05/Jan/23