Menu Close

Given-a-2-b-2-1-and-c-2-d-2-1-The-minimum-value-of-ac-bd-2-is-




Question Number 26917 by Joel578 last updated on 31/Dec/17
Given a^2  + b^2  = 1 and c^2  + d^2  = 1  The minimum value of ac + bd − 2 is ...
Givena2+b2=1andc2+d2=1Theminimumvalueofac+bd2is
Commented by prakash jain last updated on 31/Dec/17
(a+c)^2 +(b+d)^2 ≥0  a^2 +c^2 +b^2 +d^2 +2(ac+bd)≥0  2+2(ac+bd)≥0  (ac+bd)≥−1
(a+c)2+(b+d)20a2+c2+b2+d2+2(ac+bd)02+2(ac+bd)0(ac+bd)1
Commented by Joel578 last updated on 31/Dec/17
thank you very much
thankyouverymuch
Answered by ajfour last updated on 31/Dec/17
let  a=cos θ,  b=sin θ         c=cos φ,  d=sin φ  ac+bd−2=cos (θ−φ)−2  min. value =−3 .
leta=cosθ,b=sinθc=cosϕ,d=sinϕac+bd2=cos(θϕ)2min.value=3.
Commented by Joel578 last updated on 02/Jan/18
thank you very much
thankyouverymuch

Leave a Reply

Your email address will not be published. Required fields are marked *