Menu Close

Given-a-3-7-50-b-3-7-50-Prove-that-a-7-b-7-is-an-even-number-




Question Number 101052 by 1549442205 last updated on 30/Jun/20
Given a=^3 (√(7+(√(50)))),b=^3 (√(7−(√(50)))).Prove  that a^7 +b^7 is an even number.
Givena=37+50,b=3750.Provethata7+b7isanevennumber.
Answered by MJS last updated on 30/Jun/20
a=((7+5(√2)))^(1/3) =1+(√2)  b=((7−5(√2)))^(1/3) =1−(√2)  we can show that (p+q(√r))^n +(p−q(√r))^n   with p, q∈Z and r, n∈N must always be  an even number  α=p; β=q(√r)  (α+β)^n +(α−β)^n  leads to cancelling out  some terms and doubling the remaining  terms ⇒ (α+β)^n +(α−β)^n =2k  I haven′t got the time to type the proof but  it′s obvious
a=7+523=1+2b=7523=12wecanshowthat(p+qr)n+(pqr)nwithp,qZandr,nNmustalwaysbeanevennumberα=p;β=qr(α+β)n+(αβ)nleadstocancellingoutsometermsanddoublingtheremainingterms(α+β)n+(αβ)n=2kIhaventgotthetimetotypetheproofbutitsobvious
Commented by 1549442205 last updated on 01/Jul/20
Thank you sir a lot.You are welcome.
Thankyousiralot.Youarewelcome.
Commented by 1549442205 last updated on 30/Jun/20
Thank you sir a lot .Please,I get permission  to submit a way as follows:  i)If n is odd then A=(p+q(√r))^(2k+1) +(p−q(√r))^(2k+1)   =2p[(p+q(√r))^(2k) −(p+q)^(2k−1) (p−q(√r))+  ...(p−q(√r))^(2k) ]⇒A is even  ii)If n =2k then A=[(p+q(√r))^k +(p−q(√r))^k ]^2   +for k=1⇒A=2p^2 +2q^2 r⇒A is even  +Suppose A is even ∀n≤2k i.e   A_n =(p+q(√r))^n +(p−q(√r))^n is even ∀n≤2k  Then A_(2n+2) =[(p+q(√r))^(k+1) +(p−q(√r))^(k+1) ]^2   −2(p^2 −q^2 r)^(k+1) =(2M)^2 −2(p^2 −q^2 r)^(k+1) =2Q  which shows that ”A is even” true for ∀n=2k  From i)and ii) follows A is even ∀n  Sir,is it all right?Thank you sir!
Thankyousiralot.Please,Igetpermissiontosubmitawayasfollows:i)IfnisoddthenA=(p+qr)2k+1+(pqr)2k+1=2p[(p+qr)2k(p+q)2k1(pqr)+Missing or unrecognized delimiter for \leftii)Ifn=2kthenA=[(p+qr)k+(pqr)k]2+fork=1A=2p2+2q2rAiseven+SupposeAisevenn2ki.eAn=(p+qr)n+(pqr)nisevenn2kThenA2n+2=[(p+qr)k+1+(pqr)k+1]22(p2q2r)k+1=(2M)22(p2q2r)k+1=2QwhichshowsthatAiseventrueforn=2kFromi)andii)followsAisevennSir,isitallright?Thankyousir!
Commented by MJS last updated on 30/Jun/20
looks right to me
looksrighttome
Answered by 1549442205 last updated on 03/Jul/20
ab=^3 (√((7+(√(50)))(7−(√(50)))))=−1.Hence,  a^3 +b^3 =14=(a+b)^3 −3ab(a+b)  =(a+b)^3 +3(a+b)⇒(a+b)^3 +3(a+b)−14=0  ⇔(a+b−2)[(a+b)^2 +2(a+b)+7]=0   ⇒a+b=2.From  a^7 +b^7 =(a+b)(a^6 −a^5 b+a^4 b^2 −a^3 b^3 +a^2 b^4 −ab^5 +b^6 )  =2(a^6 −a^5 b+a^4 b^2 −a^3 b^3 +a^2 b^4 −ab^5 +b^6 )  which shows that a^7 +b^7 is odd number(q.e.d)  other way:  a^4 +b^4 =(a^2 +b^2 )^2 −2a^2 b^2 =[(a+b)^2 −2ab]^2 −2a^2 b^2   =(2^2 −2(−1))^2 −2×1=6^2 −2=34  a^7 +b^7 =(a^3 +b^3 )(a^4 +b^4 )−a^3 b^3 (a+b)  =14×34−(−1)^3 ×2=478,so a^7 +b^7   is a evev number(q.e.d)
ab=3(7+50)(750)=1.Hence,a3+b3=14=(a+b)33ab(a+b)=(a+b)3+3(a+b)(a+b)3+3(a+b)14=0(a+b2)[(a+b)2+2(a+b)+7]=0a+b=2.Froma7+b7=(a+b)(a6a5b+a4b2a3b3+a2b4ab5+b6)=2(a6a5b+a4b2a3b3+a2b4ab5+b6)whichshowsthata7+b7isoddnumber(q.e.d)otherway:a4+b4=(a2+b2)22a2b2=[(a+b)22ab]22a2b2=(222(1))22×1=622=34a7+b7=(a3+b3)(a4+b4)a3b3(a+b)=14×34(1)3×2=478,soa7+b7isaevevnumber(q.e.d)

Leave a Reply

Your email address will not be published. Required fields are marked *