Question Number 101052 by 1549442205 last updated on 30/Jun/20

Answered by MJS last updated on 30/Jun/20

Commented by 1549442205 last updated on 01/Jul/20

Commented by 1549442205 last updated on 30/Jun/20
![Thank you sir a lot .Please,I get permission to submit a way as follows: i)If n is odd then A=(p+q(√r))^(2k+1) +(p−q(√r))^(2k+1) =2p[(p+q(√r))^(2k) −(p+q)^(2k−1) (p−q(√r))+ ...(p−q(√r))^(2k) ]⇒A is even ii)If n =2k then A=[(p+q(√r))^k +(p−q(√r))^k ]^2 +for k=1⇒A=2p^2 +2q^2 r⇒A is even +Suppose A is even ∀n≤2k i.e A_n =(p+q(√r))^n +(p−q(√r))^n is even ∀n≤2k Then A_(2n+2) =[(p+q(√r))^(k+1) +(p−q(√r))^(k+1) ]^2 −2(p^2 −q^2 r)^(k+1) =(2M)^2 −2(p^2 −q^2 r)^(k+1) =2Q which shows that ”A is even” true for ∀n=2k From i)and ii) follows A is even ∀n Sir,is it all right?Thank you sir!](https://www.tinkutara.com/question/Q101090.png)
Commented by MJS last updated on 30/Jun/20

Answered by 1549442205 last updated on 03/Jul/20
![ab=^3 (√((7+(√(50)))(7−(√(50)))))=−1.Hence, a^3 +b^3 =14=(a+b)^3 −3ab(a+b) =(a+b)^3 +3(a+b)⇒(a+b)^3 +3(a+b)−14=0 ⇔(a+b−2)[(a+b)^2 +2(a+b)+7]=0 ⇒a+b=2.From a^7 +b^7 =(a+b)(a^6 −a^5 b+a^4 b^2 −a^3 b^3 +a^2 b^4 −ab^5 +b^6 ) =2(a^6 −a^5 b+a^4 b^2 −a^3 b^3 +a^2 b^4 −ab^5 +b^6 ) which shows that a^7 +b^7 is odd number(q.e.d) other way: a^4 +b^4 =(a^2 +b^2 )^2 −2a^2 b^2 =[(a+b)^2 −2ab]^2 −2a^2 b^2 =(2^2 −2(−1))^2 −2×1=6^2 −2=34 a^7 +b^7 =(a^3 +b^3 )(a^4 +b^4 )−a^3 b^3 (a+b) =14×34−(−1)^3 ×2=478,so a^7 +b^7 is a evev number(q.e.d)](https://www.tinkutara.com/question/Q101604.png)