Menu Close

Given-A-5t-2-i-tj-t-3-k-and-B-sin-t-i-cos-t-j-Calculate-d-A-B-dx-d-A-B-dx-and-d-A-A-dx-




Question Number 159111 by mathocean1 last updated on 13/Nov/21
Given A^→ =5t^2 i^→ +tj^→ −t^3 k^→  and  B^→ =sin(t)i^→ −cos(t)j^→ .  Calculate ((d(A^→ .B^→ ))/dx) ; ((d(A^→ ∧B^→ ))/dx)  and  ((d(A^→ .A^→ ))/dx).
GivenA=5t2i+tjt3kandB=sin(t)icos(t)j.Calculated(A.B)dx;d(AB)dxandd(A.A)dx.
Answered by physicstutes last updated on 13/Nov/21
A^→ .B^→  = 5t^2 sin (t) −t cos t  ⇒ ((d(A^→ .B^→ ))/dt) = 5t^2 cos t + 10t sin t + t sin t −cos t    = 5t^2  cos t + 11t sin t − cos t  A∧B =  (((5t^2  )),(t),((−t^3 )) )× (((sin t)),((− cos t)),(0) ) =  (((t^3  cos t)),((−t^3 sin t)),((t^3 cos t)) )  ((d(A×B))/dt) = (−t^3 sin t + 3t^2 cost)i +...
A.B=5t2sin(t)tcostd(A.B)dt=5t2cost+10tsint+tsintcost=5t2cost+11tsintcostAB=(5t2tt3)×(sintcost0)=(t3costt3sintt3cost)d(A×B)dt=(t3sint+3t2cost)i+

Leave a Reply

Your email address will not be published. Required fields are marked *