given-A-a-square-matrix-non-singular-A-I-find-A-such-that-A-3-I- Tinku Tara June 4, 2023 Matrices and Determinants 0 Comments FacebookTweetPin Question Number 80830 by jagoll last updated on 07/Feb/20 givenAasquarematrixnonsingularA≠I.findAsuchthatA3=I Answered by ~blr237~ last updated on 07/Feb/20 M=diag(1,j,j−)withj=[1,−2π3]theproblemwillbealittledifficultifwewantamatrixwithrealsfactorsinthiscase:letfthelinearapplicationrelatedtoAA3−I=0⇔f3−id=(f−id)∘(f2+f+id)=0∼thenIm(f2+f+id)⊆ker(f−id)ifwewanta2−squarematrix,asA≠Iwewillhaveker(f−id)={0}causeifnotπ(f)(x)=(x−1)(x−a)withaanotherreal(thatcanbeequalto1)butasπ(f)(x)shoulddivide(x3−1)thatshowaisnotreal:absurdSoIm(f2+f+id)={0}thenf2+f+id=0∼usingx2+x+1=34[(2x+13)2+1]wegot(2f+id3)2+id=0∼(nowwejusthavetofind2−squarematrixsuchasB2=−I)andwealreadyhavei≅antidiag(1,−1)and−i≅antidiag(−1,1)sofcanbeA={diag(−12,−12)antidiag(32,−32)ifwewantAa3−squarematrix(sodegree(π(f))=3anditdividex3−1thenπ(f)(x)=(x−1)(x2+x+1)nowtheoremofdecompositionallowthatker(f−id)⊕ker(f2+f+id)=Eandtheareeachofthemsteadyletassumedthatker(f−id)=<u>andker(f2+f+id)=<v,w>B=(u,v,w)isabaseofEsuchasf(ker(f2+f+id))⊆ker(f2+f+id)thereexist(a,b,c,d)∈R∗4suchas{f(v)=av+bwf(w)=cv+dwthatshowthematrixMoftherestrictionoffonker(f2+f+id)andweknowthatitdistinctivepolynomialcanbeπ′(f)(x)=x2−trMx+detMsecondlythetheoremofdecompositiontellusthatπ′(f)=x2+x+1sobyunicitytrM=det=−1then{a+d=−1ad−bc=−1nowjustchooseyourvaluewecantakea=d=−12,thenbc=54,b=5andc=14finalyinthebaseByouwillgotamatrixAsuchasf(u)=u;f(v)=−v2+5w;f(w)=v4−w2 Commented by jagoll last updated on 07/Feb/20 thankyoumister Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-146366Next Next post: calculate-0-arctan-x-2-x-2-4-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.