Menu Close

given-A-a-square-matrix-non-singular-A-I-find-A-such-that-A-3-I-




Question Number 80830 by jagoll last updated on 07/Feb/20
given A a square matrix non  singular A≠ I.  find A such that A^3  = I
givenAasquarematrixnonsingularAI.findAsuchthatA3=I
Answered by ~blr237~ last updated on 07/Feb/20
M=diag(1,j,j^− )  with  j=[1,−((2π)/3)]  the problem will be a little difficult if we   want a matrix with reals factors   in this case : let f the linear application related to A  A^3 −I=0 ⇔ f^3 −id=(f−id)○(f^2 +f+id)=0^∼      then     Im(f^2 +f+id)⊆ker(f−id)    if we want a 2−square matrix , as A≠I we will have ker(f−id)={0}   cause if not  π(f)(x)=(x−1)(x−a) with a  another real (that can be equal to 1)  but as  π(f)(x) should divide (x^3 −1)  that show a is not real : absurd  So   Im(f^2 +f+id)={0} then  f^2 +f+id=0^∼    using  x^2 +x+1=(3/4)[(((2x+1)/( (√3))))^2 +1]  we got (((2f+id)/( (√3))))^2 +id=0^∼   ( now we just have to find 2−square matrix such as B^2 =−I )  and we already have  i≅anti diag(1,−1) and −i≅anti diag(−1,1)  so f can be  A=  { ((diag(((−1)/2),−(1/2)))),((anti diag(((√3)/2) ,−((√3)/2)))) :}   if we want A a 3−square matrix   ( so  degree(π(f))=3  and it divide x^3 −1   then  π(f)(x)=(x−1)(x^2 +x+1)   now  theorem of decomposition allow that  ker(f−id)⊕ker(f^2 +f+id)=E and the are each of them steady   let assumed that ker(f−id)=<u> and ker(f^2 +f+id)=<v,w>  B=(u,v,w) is a base of E   such as f(ker(f^2 +f+id))⊆ker(f^2 +f+id)  there exist (a,b,c,d)∈R_∗ ^4  such as  { ((f(v)=av+bw)),((f(w)=cv+dw)) :}  that show the matrix M of the restriction of f on ker(f^2 +f+id)  and we know that it  distinctive polynomial can be π′(f)(x)=x^2 −trMx+detM   secondly  the theorem of decomposition tell us that π′(f)=x^2 +x+1   so by unicity  trM=det=−1   then    { ((a+d=−1)),((ad−bc=−1)) :}  now just choose your value   we can take  a=d=−(1/2) , then bc=(5/4) , b=5 and c=(1/4)   finaly   in the base B you will got a matrix A such as  f(u)=u  ; f(v)=−(v/2)+5w ;f(w)=(v/4)−(w/2)
M=diag(1,j,j)withj=[1,2π3]theproblemwillbealittledifficultifwewantamatrixwithrealsfactorsinthiscase:letfthelinearapplicationrelatedtoAA3I=0f3id=(fid)(f2+f+id)=0thenIm(f2+f+id)ker(fid)ifwewanta2squarematrix,asAIwewillhaveker(fid)={0}causeifnotπ(f)(x)=(x1)(xa)withaanotherreal(thatcanbeequalto1)butasπ(f)(x)shoulddivide(x31)thatshowaisnotreal:absurdSoIm(f2+f+id)={0}thenf2+f+id=0usingx2+x+1=34[(2x+13)2+1]wegot(2f+id3)2+id=0(nowwejusthavetofind2squarematrixsuchasB2=I)andwealreadyhaveiantidiag(1,1)andiantidiag(1,1)sofcanbeA={diag(12,12)antidiag(32,32)ifwewantAa3squarematrix(sodegree(π(f))=3anditdividex31thenπ(f)(x)=(x1)(x2+x+1)nowtheoremofdecompositionallowthatker(fid)ker(f2+f+id)=Eandtheareeachofthemsteadyletassumedthatker(fid)=<u>andker(f2+f+id)=<v,w>B=(u,v,w)isabaseofEsuchasf(ker(f2+f+id))ker(f2+f+id)thereexist(a,b,c,d)R4suchas{f(v)=av+bwf(w)=cv+dwthatshowthematrixMoftherestrictionoffonker(f2+f+id)andweknowthatitdistinctivepolynomialcanbeπ(f)(x)=x2trMx+detMsecondlythetheoremofdecompositiontellusthatπ(f)=x2+x+1sobyunicitytrM=det=1then{a+d=1adbc=1nowjustchooseyourvaluewecantakea=d=12,thenbc=54,b=5andc=14finalyinthebaseByouwillgotamatrixAsuchasf(u)=u;f(v)=v2+5w;f(w)=v4w2
Commented by jagoll last updated on 07/Feb/20
thank you mister
thankyoumister

Leave a Reply

Your email address will not be published. Required fields are marked *