Menu Close

given-a-ar-ar-2-ar-3-is-a-GPwith-n-r-lt-1-if-a-x-1-x-2-ar-x-3-x-4-x-5-x-6-ar-2-x-7-x-8-x-9-x-10-x-11-x-12-ar-3-where-a-x-1-x-2-ar-AP-ar-x-3-x-4-x-5-x




Question Number 79649 by john santu last updated on 27/Jan/20
given a,ar,ar^2 ,ar^3 ,... is a GPwith   n→∞ ,r < 1  if : a,x_1 ,x_2 ,ar,x_3 , x_4 ,x_5 ,x_6 ,ar^2 ,  x_7 ,x_8 ,x_9 ,x_(10) ,x_(11) ,x_(12) , ar^3 ,... .  where : a,x_1 ,x_2 ,ar ⇒AP  ar,x_3 ,x_4 ,x_5 ,x_6 ,ar^2 ⇒AP  ar^2 ,x_7 ,x_8 ,x_9 ,x_(10) ,x_(11) ,x_(12) ,ar^3 ⇒AP  ...etc  if lim_(n→∞)  (x_1 +x_2 +x_3 +...)= ((21)/(16))×(a/(1−r))  what is r ?
givena,ar,ar2,ar3,isaGPwithn,r<1if:a,x1,x2,ar,x3,x4,x5,x6,ar2,x7,x8,x9,x10,x11,x12,ar3,.where:a,x1,x2,arAPar,x3,x4,x5,x6,ar2APar2,x7,x8,x9,x10,x11,x12,ar3APetciflimn(x1+x2+x3+)=2116×a1rwhatisr?
Commented by john santu last updated on 27/Jan/20
mister Mjs , W, mind is power i need your help
misterMjs,W,mindispowerineedyourhelp
Commented by mind is power last updated on 27/Jan/20
a,x_1 ,x_2 ,ar   Ap  s=2a(1+r)  x_1 +x_2 =2a(1+r)−a(1+r)=a(1+r)  x_3 +x_4 +x_5 +x_6 =2(ar+ar^2 )  x_7 +........+x_(12) =3(ar^2 +ar^4 )  we get Σx_k =Σ(a+2ar+3ar^2 +.......)+Σ(ar+2ar^2 +........)  =aΣ(1+2r+3r^2 +....)+arΣ(1+2r+3r^2 +.......)  =(a+ar)Σ(1+2r+3r^2 +....)  Σ_(k≥1) kr^(k−1) =Σ(d/dr)(r^k )=(d/dr)Σr^k =(d/dr)((r/(1−r)))=(1/((1−r)^2 ))  ⇒((a(1+r))/((1−r)^2 ))=((21a)/(16(1−r))),r∈]0,1[  ⇒21(1−r)=16(1+r)⇒5=37r⇒r=(5/(37))
a,x1,x2,arAps=2a(1+r)x1+x2=2a(1+r)a(1+r)=a(1+r)x3+x4+x5+x6=2(ar+ar2)x7+..+x12=3(ar2+ar4)wegetΣxk=Σ(a+2ar+3ar2+.)+Σ(ar+2ar2+..)=aΣ(1+2r+3r2+.)+arΣ(1+2r+3r2+.)=(a+ar)Σ(1+2r+3r2+.)k1krk1=Σddr(rk)=ddrΣrk=ddr(r1r)=1(1r)2a(1+r)(1r)2=21a16(1r),r]0,1[21(1r)=16(1+r)5=37rr=537
Commented by john santu last updated on 27/Jan/20
sir the option   (1/2), (1/3),(1/4),(1/5) and (1/6)
sirtheoption12,13,14,15and16
Commented by john santu last updated on 27/Jan/20
may be it answer in my book wrong
maybeitanswerinmybookwrong
Commented by john santu last updated on 27/Jan/20
thank you mr Mind is power, W
thankyoumrMindispower,W
Commented by mind is power last updated on 27/Jan/20
withe pleasur
withepleasur
Answered by mr W last updated on 27/Jan/20
ar^k ,x_(m+1) ,x_(m+2) ,...,x_(m+2(k+1)) ,ar^(k+1)  are AP  with m=Σ_(j=0) ^(k−1) 2(j+1)=2×((k(k+1))/2)=k(k+1)  say this AP is:  b_0 ,b_1 ,...,b_(2(k+1)) ,b_(2(k+1)+1)   Σb=(((b_0 +b_(2(k+1)+1) )(2(k+1)+2))/2)=(k+2)(ar^k +ar^(k+1) )  Σb=ar^k +Σx+ar^(k+1) =(k+2)(ar^k +ar^(k+1) )  ⇒Σx=(k+1)(ar^k +ar^(k+1) )=a(1+r)(k+1)r^k   ⇒Σ_(all) x=Σ_(k=0) ^∞ a(1+r)(k+1)r^k   ⇒Σ_(all) x=((a(1+r))/r)Σ_(k=1) ^∞ kr^k   ⇒Σ_(all) x=((a(1+r))/r)S  S=1r+2r^2 +3r^3 +...  rS=1r^2 +2r^3 +3r^4 +...  S−rS=r+r^2 +r^3 +...=(r/(1−r))  (1−r)S=(r/(1−r))  S=(r/((1−r)^2 ))  ⇒Σ_(all) x=((a(1+r))/r)×(r/((1−r)^2 ))=((a(1+r))/((1−r)^2 ))  ⇒((a(1+r))/((1−r)^2 ))=((21)/(16))×(a/(1−r))  ⇒((1+r)/(1−r))=((21)/(16))  ⇒16+16r=21−21r  ⇒37r=5  ⇒r=(5/(37))
ark,xm+1,xm+2,,xm+2(k+1),ark+1areAPwithm=k1j=02(j+1)=2×k(k+1)2=k(k+1)saythisAPis:b0,b1,,b2(k+1),b2(k+1)+1Σb=(b0+b2(k+1)+1)(2(k+1)+2)2=(k+2)(ark+ark+1)Σb=ark+Σx+ark+1=(k+2)(ark+ark+1)Σx=(k+1)(ark+ark+1)=a(1+r)(k+1)rkallx=k=0a(1+r)(k+1)rkallx=a(1+r)rk=1krkallx=a(1+r)rSS=1r+2r2+3r3+rS=1r2+2r3+3r4+SrS=r+r2+r3+=r1r(1r)S=r1rS=r(1r)2allx=a(1+r)r×r(1r)2=a(1+r)(1r)2a(1+r)(1r)2=2116×a1r1+r1r=211616+16r=2121r37r=5r=537

Leave a Reply

Your email address will not be published. Required fields are marked *