Question Number 99742 by Ar Brandon last updated on 23/Jun/20
$$\mathcal{G}\mathrm{iven}\:\:\mathrm{A}+\mathrm{B}+\mathrm{C}=\mathrm{180}°\:\:\mathrm{prove}\:\:\mathrm{that} \\ $$$$\mathrm{tan}\frac{\mathrm{A}}{\mathrm{2}}\mathrm{tan}\frac{\mathrm{B}}{\mathrm{2}}+\mathrm{tan}\frac{\mathrm{B}}{\mathrm{2}}\mathrm{tan}\frac{\mathrm{C}}{\mathrm{2}}+\mathrm{tan}\frac{\mathrm{C}}{\mathrm{2}}\mathrm{tan}\frac{\mathrm{A}}{\mathrm{2}}=\mathrm{1} \\ $$
Answered by smridha last updated on 23/Jun/20
$$\boldsymbol{{tan}}\left(\frac{\boldsymbol{{A}}}{\mathrm{2}}+\frac{\boldsymbol{{B}}}{\mathrm{2}}+\frac{\boldsymbol{{C}}}{\mathrm{2}}\right)=\boldsymbol{{tan}}\frac{\boldsymbol{\pi}}{\mathrm{2}}=\infty\: \\ $$$$\Rightarrow\frac{\boldsymbol{{tan}}\frac{\boldsymbol{{A}}}{\mathrm{2}}+\boldsymbol{{tan}}\frac{\boldsymbol{{B}}}{\mathrm{2}}+\boldsymbol{{tan}}\frac{\boldsymbol{{C}}}{\mathrm{2}}−\boldsymbol{{tan}}\frac{\boldsymbol{{A}}}{\mathrm{2}}.\boldsymbol{{tan}}\frac{\boldsymbol{{B}}}{\mathrm{2}}\boldsymbol{{tan}}\frac{\boldsymbol{{C}}}{\mathrm{2}}}{\mathrm{1}−\left[\boldsymbol{{tan}}\frac{\boldsymbol{{A}}}{\mathrm{2}}.\boldsymbol{{tan}}\frac{\boldsymbol{{B}}}{\mathrm{2}}+\boldsymbol{{tan}}\frac{\boldsymbol{{B}}}{\mathrm{2}}.\boldsymbol{{tan}}\frac{\boldsymbol{{C}}}{\mathrm{2}}+\boldsymbol{{tan}}\frac{\boldsymbol{{C}}}{\mathrm{2}}.\boldsymbol{{tan}}\frac{\boldsymbol{{A}}}{\mathrm{2}}\right]}=\infty \\ $$$$\boldsymbol{{this}}\:\boldsymbol{{is}}\:\boldsymbol{{possible}}\:\boldsymbol{{when}}\:\boldsymbol{{the}}\:\boldsymbol{{denominator}} \\ $$$$\boldsymbol{{goes}}\:\boldsymbol{{to}}\:\:\:\mathrm{0} \\ $$$$\boldsymbol{{therefore}}.. \\ $$$$\left[\boldsymbol{{tan}}\frac{\boldsymbol{{A}}}{\mathrm{2}}\boldsymbol{{tan}}\frac{\boldsymbol{{B}}}{\mathrm{2}}+\boldsymbol{{tan}}\frac{\boldsymbol{{B}}}{\mathrm{2}}.\boldsymbol{{tan}}\frac{\boldsymbol{{C}}}{\mathrm{2}}+\boldsymbol{{tan}}\frac{\boldsymbol{{C}}}{\mathrm{2}}.\boldsymbol{{tan}}\frac{\boldsymbol{{A}}}{\mathrm{2}}\right]=\mathrm{1} \\ $$$$ \\ $$
Commented by smridha last updated on 23/Jun/20
$$\boldsymbol{{is}}\:\boldsymbol{{there}}\:\boldsymbol{{any}}\:\boldsymbol{{logic}}\:\boldsymbol{{behind}}\:\boldsymbol{{your}} \\ $$$$\boldsymbol{{silly}}\:\boldsymbol{{question}}?? \\ $$
Commented by Ar Brandon last updated on 23/Jun/20
Thank you Sir
Commented by smridha last updated on 23/Jun/20
yeah!! welcome
Commented by Rasheed.Sindhi last updated on 23/Jun/20
$${Sir},\:{is}\:{there}\:{any}\:{logic}\:{behind}\: \\ $$$${writing}\:{in}\:{different}\:{colours}? \\ $$
Commented by Rasheed.Sindhi last updated on 23/Jun/20
$${If}\:\:{you}\:{do}\:{something}\:{different}, \\ $$$${you}\:{should}\:{have}\:{a}\:{reason}\:{for}\:{that}. \\ $$$${Specially}\:{if}\:{you}\:{are}\:{math}-{related}\: \\ $$$${person}.{May}\:{be}\:\boldsymbol{{only}}\:\boldsymbol{{beatification}} \\ $$$${be}\:{a}\:{reason}. \\ $$
Commented by smridha last updated on 23/Jun/20
$$\boldsymbol{{why}}\:\boldsymbol{{obsessed}}\:\boldsymbol{{for}}\:\boldsymbol{{black}}\:\boldsymbol{{and}}\:\boldsymbol{{white}} \\ $$$$\boldsymbol{{man}}!!\boldsymbol{{there}}\:\boldsymbol{{is}}\:\boldsymbol{{a}}\:\boldsymbol{{facility}}\:\boldsymbol{{for}} \\ $$$$\boldsymbol{{choosing}}\:\boldsymbol{{defrent}}\:\boldsymbol{{colours}}\:..\boldsymbol{{you}}\:\boldsymbol{{may}} \\ $$$$\boldsymbol{{use}}\:\boldsymbol{{or}}\:\boldsymbol{{you}}\:\boldsymbol{{may}}\:\boldsymbol{{not}}..\boldsymbol{{that}}'{s}\:\boldsymbol{{your}} \\ $$$$\boldsymbol{{choice}}…\boldsymbol{{which}}\:\boldsymbol{{colour}}\:\boldsymbol{{combination}} \\ $$$${I}\:\boldsymbol{{used}}\:\boldsymbol{{that}}'{s}\:\boldsymbol{{my}}\:\boldsymbol{{business}}… \\ $$$$\boldsymbol{{the}}\:\boldsymbol{{solution}}\:\boldsymbol{{is}}\:\boldsymbol{{prominent}}\:\boldsymbol{{and}} \\ $$$$\boldsymbol{{bolt}}\:\boldsymbol{{enough}}\:\boldsymbol{{so}}\:\boldsymbol{{there}}\:\boldsymbol{{shall}}\:\boldsymbol{{be}}\:\boldsymbol{{no}} \\ $$$$\boldsymbol{{objection}}…. \\ $$
Commented by Rasheed.Sindhi last updated on 23/Jun/20
$${Ok}\:\boldsymbol{\mathrm{s}}{I}\mathbb{R}\:\mathrm{a}\mathcal{S}\:\mathcal{Y}\circledcirc_{\boldsymbol{\mathrm{U}}} \:\mathcal{W}{i}\mathcal{S}^{{h}} \:! \\ $$$${I}\:{only}\:{want}\:{to}\:{say}\:{that}\:{use}\:{of} \\ $$$${different}\:{colors}\:{should}\:{be}\:{helpful} \\ $$$${in}\:{understanding}\:{process}.{It}\:{should} \\ $$$${be}\:{used}\:{as}\:{a}\:{tool}. \\ $$
Commented by Ar Brandon last updated on 23/Jun/20
cheers
Commented by Rasheed.Sindhi last updated on 24/Jun/20
cool !
Commented by Rasheed.Sindhi last updated on 24/Jun/20
$${Sir}/{Madam}\:{Smridha} \\ $$$${Sorry}\:{if}\:{my}\:{coool}\:{words}\:{made}\:{you} \\ $$$$\boldsymbol{{angry}}.{Actually}\:{I}\:{didn}'{t}\:{want}\:{that}. \\ $$
Commented by smridha last updated on 24/Jun/20
$$\boldsymbol{{this}}\:\boldsymbol{{is}}\:\boldsymbol{{not}}\:\boldsymbol{{for}}\:\boldsymbol{{cool}}\:\boldsymbol{{words}}\: \\ $$$$\boldsymbol{{this}}\:\boldsymbol{{is}}\:\boldsymbol{{for}}\:\boldsymbol{{your}}\:\boldsymbol{{previous}}\:\boldsymbol{{comment}}. \\ $$$$\boldsymbol{{this}}\:\boldsymbol{{will}}\:\boldsymbol{{be}}\:\boldsymbol{{good}}\:\boldsymbol{{if}}\:\boldsymbol{{you}}\:\boldsymbol{{focus}} \\ $$$$\boldsymbol{{on}}\:\boldsymbol{{solving}}\:\boldsymbol{{problem}}\:\boldsymbol{{instead}}\:\boldsymbol{{of}} \\ $$$$\boldsymbol{{creating}}\:\boldsymbol{{violence}}.\boldsymbol{{I}}\:{do}\boldsymbol{{no}\mathrm{t}}\:\boldsymbol{{know}} \\ $$$$\boldsymbol{{how}}\:\boldsymbol{{long}}\:\boldsymbol{{you}}\:\boldsymbol{{are}}\:\boldsymbol{{present}}\:\boldsymbol{{in}}\:\boldsymbol{{this}} \\ $$$$\boldsymbol{{forum}}…\boldsymbol{{but}}\:\boldsymbol{{how}}\:\boldsymbol{{much}}\:\boldsymbol{{I}}\:\boldsymbol{{know}} \\ $$$$\boldsymbol{{there}}\:\boldsymbol{{is}}\:\boldsymbol{{no}}\:\boldsymbol{{madam}}!!\boldsymbol{{that}}'\boldsymbol{{s}}\:\boldsymbol{{your}} \\ $$$$\mathbb{VERDENCY}… \\ $$
Commented by Rasheed.Sindhi last updated on 24/Jun/20
$$\boldsymbol{{Sir}}\:{Smridha},\:{pl}\:{go}\:{and}\:{work} \\ $$$${smoothly}.{Write}\:{your}\:{colorful}/ \\ $$$${beautiful}\:{answers}.{No}\:{one}\:{will} \\ $$$${disturb}\:{you}!..{When}\:{I}\:{scroll}\:{through} \\ $$$${posts}\:{of}\:{the}\:{forum},{I}\:{imediately} \\ $$$${recognise}\:{yor}\:{posts}\:{without}\:{reading} \\ $$$${your}\:{name}!…. \\ $$$${Actually}\:{I}\:{wasn}'{t}\:{certain}\:{of}\:{your} \\ $$$${being}\:{Mr}.\:{so}\:{I}\:{write}\:{both}\:{sir}\:\& \\ $$$${madam}.\:{There}\:{was}\:{no}\:{other}\: \\ $$$${reason}.{Don}'{t}\:{think}\:{negatively} \\ $$$${for}\:{others}.{Thank}\:{you}.{Bye}! \\ $$$$\left({The}\:{thread}\:{has}\:{been}\:{too}\:{long}!\right) \\ $$
Answered by Dwaipayan Shikari last updated on 23/Jun/20
$${tan}\frac{{B}}{\mathrm{2}}\left[\frac{{sin}\frac{\left({A}+{C}\right)}{\mathrm{2}}}{{cos}\frac{{C}}{\mathrm{2}}{cos}\frac{{A}}{\mathrm{2}}}\right]+\frac{{sin}\frac{{A}}{\mathrm{2}}{sin}\frac{{C}}{\mathrm{2}}}{{cos}\frac{{A}}{\mathrm{2}}{cos}\frac{{C}}{\mathrm{2}}}\:\:\:\left\{\left\{\left\{\frac{{sin}\frac{{A}}{\mathrm{2}}}{{cos}\frac{{A}}{\mathrm{2}}}+\frac{{sin}\frac{{C}}{\mathrm{2}}}{{cos}\frac{{C}}{\mathrm{2}}}=\frac{{sin}\frac{\left({A}+{C}\right)}{\mathrm{2}}}{{cos}\frac{{A}}{\mathrm{2}}{cos}\frac{{C}}{\mathrm{2}}}\right\}\right\}\right\} \\ $$$$=\frac{{sin}\left(\frac{\pi}{\mathrm{2}}−\frac{{A}+{C}}{\mathrm{2}}\right)+{sin}\frac{{A}}{\mathrm{2}}{sin}\frac{{C}}{\mathrm{2}}}{{cos}\frac{{A}}{\mathrm{2}}{cos}\frac{{C}}{\mathrm{2}}}=\frac{{cos}\frac{{A}}{\mathrm{2}}{cos}\frac{{C}}{\mathrm{2}}}{{cos}\frac{{A}}{\mathrm{2}}{cos}\frac{{C}}{\mathrm{2}}}=\mathrm{1}\left[{Proved}\right]\left\{\left\{\left\{{Because}\:{tan}\frac{{A}}{\mathrm{2}}{tan}\frac{{B}}{\mathrm{2}}+{tan}\frac{{C}}{\mathrm{2}}{tan}\frac{{B}}{\mathrm{2}}={tan}\frac{{B}}{\mathrm{2}}\left(\frac{{sin}\left({A}+{C}\right)}{{cos}\frac{{A}}{\mathrm{2}}{cos}\frac{{C}}{\mathrm{2}}}\right)\right.\right.\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left\{{sin}\frac{{A}+{C}}{\mathrm{2}}={cos}\frac{{B}}{\mathrm{2}}\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left\{{sin}\left(\frac{\pi}{\mathrm{2}}−\frac{{A}+{C}}{\mathrm{2}}\right)\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={cos}\frac{{A}}{\mathrm{2}}{cos}\frac{{C}}{\mathrm{2}}−{sin}\frac{{A}}{\mathrm{2}}{sin}\frac{{C}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$
Commented by Ar Brandon last updated on 23/Jun/20
Thank you Sir
Commented by Dwaipayan Shikari last updated on 23/Jun/20
please don't tell me sir .I am a student. I am in pleasure to solve your problem . Thanking you.
Commented by Ar Brandon last updated on 23/Jun/20
As you wish !
Answered by 1549442205 last updated on 23/Jun/20
$$\mathrm{We}\:\mathrm{have}\:\frac{\mathrm{A}+\mathrm{B}}{\mathrm{2}}=\frac{\pi}{\mathrm{2}}−\frac{\mathrm{C}}{\mathrm{2}}\Rightarrow\mathrm{tan}\frac{\mathrm{A}+\mathrm{B}}{\mathrm{2}}=\mathrm{tan}\left(\frac{\pi}{\mathrm{2}}−\frac{\mathrm{C}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\frac{\mathrm{tan}\frac{\mathrm{A}}{\mathrm{2}}+\mathrm{tan}\frac{\mathrm{B}}{\mathrm{2}}}{\mathrm{1}−\mathrm{tan}\frac{\mathrm{A}}{\mathrm{2}}\mathrm{tan}\frac{\mathrm{B}}{\mathrm{2}}}=\mathrm{cot}\frac{\mathrm{C}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{tan}\frac{\mathrm{C}}{\mathrm{2}}} \\ $$$$\:\Rightarrow\mathrm{tan}\frac{\mathrm{A}}{\mathrm{2}}\mathrm{tan}\frac{\mathrm{C}}{\mathrm{2}}+\mathrm{tan}\frac{\mathrm{B}}{\mathrm{2}}\mathrm{tan}\frac{\mathrm{C}}{\mathrm{2}}+\mathrm{tan}\frac{\mathrm{A}}{\mathrm{2}}\mathrm{tan}\frac{\mathrm{B}}{\mathrm{2}}=\mathrm{1}\left(\mathrm{q}.\mathrm{e}.\mathrm{d}\right) \\ $$
Commented by Ar Brandon last updated on 23/Jun/20
wow ! that was brilliant. Thanks
Commented by 1549442205 last updated on 25/Jun/20
$$\mathrm{you}\:\mathrm{are}\:\mathrm{wellcome},\mathrm{sir}! \\ $$