Question Number 157598 by naka3546 last updated on 25/Oct/21
$${Given}\:\:{a},{b},{c}\:\:{nonnegative}\:\:{numbers}\:\:{which}\:\:{satisfy}\:\:\:{a}+{b}+{c}\:=\:\mathrm{3}. \\ $$$${Prove}\:\:{that}\:\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{ab}^{\mathrm{2}} \:+\:\mathrm{1}}\:+\:\frac{\mathrm{1}}{\mathrm{2}{bc}^{\mathrm{2}} +\mathrm{1}}\:+\:\frac{\mathrm{1}}{\mathrm{2}{ac}^{\mathrm{2}} \:+\:\mathrm{1}}\:\geqslant\:\mathrm{1}\:. \\ $$
Answered by ghimisi last updated on 25/Oct/21
$$\sqrt[{\mathrm{3}}]{{abc}}\leqslant\frac{{a}+{b}+{c}}{\mathrm{3}}\Rightarrow{abc}\leqslant\mathrm{1} \\ $$$$\Sigma\frac{\mathrm{1}}{\mathrm{2}{ab}^{\mathrm{2}} +\mathrm{1}}=\Sigma\frac{\left(\frac{\mathrm{1}}{{b}}\right)^{\mathrm{2}} }{\mathrm{2}{a}+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }}\geqslant\frac{\left(\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}\right)^{\mathrm{2}} }{\mathrm{2}\left({a}+{b}+{c}\right)+\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }} \\ $$$$\frac{\left(\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}\right)^{\mathrm{2}} }{\mathrm{6}+\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}\overset{\left(\bullet\right)} {\geqslant}\mathrm{1} \\ $$$$\left(\bullet\right)\Leftrightarrow\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }+\mathrm{2}\left(\frac{\mathrm{1}}{{ab}}+\frac{\mathrm{1}}{{bc}}+\frac{\mathrm{1}}{{ac}}\right)\geqslant\mathrm{6}+\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }\Leftrightarrow \\ $$$${a}+{b}+{c}\geqslant\mathrm{3}{abc}\Leftrightarrow{abc}\leqslant\mathrm{1} \\ $$
Commented by naka3546 last updated on 25/Oct/21
$${Thank}\:\:{you},\:\:{sir}. \\ $$