Menu Close

Given-a-b-c-real-and-positive-numbers-and-a-b-c-1-Find-the-minimum-value-of-a-b-abc-




Question Number 22154 by Joel577 last updated on 12/Oct/17
Given a,b,c real and positive numbers, and  a + b + c = 1  Find the minimum value of  ((a + b)/(abc))
$$\mathrm{Given}\:{a},{b},{c}\:\mathrm{real}\:\mathrm{and}\:\mathrm{positive}\:\mathrm{numbers},\:\mathrm{and} \\ $$$${a}\:+\:{b}\:+\:{c}\:=\:\mathrm{1} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\:\frac{{a}\:+\:{b}}{{abc}} \\ $$
Answered by ajfour last updated on 12/Oct/17
let a=cx    and  b=cy  then   c(x+y+1)=1  z=((a+b)/(abc)) =((x+y)/(c^2 xy)) =(((x+y)(x+y+1)^2 )/(xy))  As z is minimum,  (∂z/∂x) =((x[(x+y+1)^2 +2(x+y)(x+y+1)]−(x+y)(x+y+1)^2 )/(x^2 y)) =0  ⇒ x[x+y+1+2x+2y]−(x+y)(x+y+1)=0  3x^2 +3xy+x−x^2 −y^2 −2xy−x−y=0  2x^2 +xy−y^2 −y=0  2x^2 +(x−1)y−y^2 =0       ...(i)  similarly  (∂z/∂y)=0  shall give  2y^2 +(y−1)x−x^2 =0     ...(ii)  ⇒   x=y  so   2x^2 +x^2 −x−x^2 =0  ⇒      2x^2 −x=0         or     x(x−(1/2))=0    we shall choose x=y=(1/2) since  a, b, and c are +ve real numbers.  Then    a=(c/2)    ;    b=(c/2)        ⇒   (c/2)+(c/2)+c =1     so     c=(1/2) ,  a=(1/4) ,   b=(1/4)   ⇒  min( ((a+b)/(abc)) )= ((1/2)/(1/32)) =16 .
$${let}\:{a}={cx}\:\:\:\:{and}\:\:{b}={cy} \\ $$$${then}\:\:\:{c}\left({x}+{y}+\mathrm{1}\right)=\mathrm{1} \\ $$$${z}=\frac{{a}+{b}}{{abc}}\:=\frac{{x}+{y}}{{c}^{\mathrm{2}} {xy}}\:=\frac{\left({x}+{y}\right)\left({x}+{y}+\mathrm{1}\right)^{\mathrm{2}} }{{xy}} \\ $$$${As}\:{z}\:{is}\:{minimum}, \\ $$$$\frac{\partial{z}}{\partial{x}}\:=\frac{{x}\left[\left({x}+{y}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2}\left({x}+{y}\right)\left({x}+{y}+\mathrm{1}\right)\right]−\left({x}+{y}\right)\left({x}+{y}+\mathrm{1}\right)^{\mathrm{2}} }{{x}^{\mathrm{2}} {y}}\:=\mathrm{0} \\ $$$$\Rightarrow\:{x}\left[{x}+{y}+\mathrm{1}+\mathrm{2}{x}+\mathrm{2}{y}\right]−\left({x}+{y}\right)\left({x}+{y}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\mathrm{3}{x}^{\mathrm{2}} +\mathrm{3}{xy}+{x}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} −\mathrm{2}{xy}−{x}−{y}=\mathrm{0} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +{xy}−{y}^{\mathrm{2}} −{y}=\mathrm{0} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +\left({x}−\mathrm{1}\right){y}−{y}^{\mathrm{2}} =\mathrm{0}\:\:\:\:\:\:\:…\left({i}\right) \\ $$$${similarly}\:\:\frac{\partial{z}}{\partial{y}}=\mathrm{0}\:\:{shall}\:{give} \\ $$$$\mathrm{2}{y}^{\mathrm{2}} +\left({y}−\mathrm{1}\right){x}−{x}^{\mathrm{2}} =\mathrm{0}\:\:\:\:\:…\left({ii}\right) \\ $$$$\Rightarrow\:\:\:{x}={y} \\ $$$${so}\:\:\:\mathrm{2}{x}^{\mathrm{2}} +{x}^{\mathrm{2}} −{x}−{x}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\:\:\:\:\:\:\mathrm{2}{x}^{\mathrm{2}} −{x}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:{or}\:\:\:\:\:{x}\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{0} \\ $$$$\:\:{we}\:{shall}\:{choose}\:{x}={y}=\frac{\mathrm{1}}{\mathrm{2}}\:{since} \\ $$$${a},\:{b},\:{and}\:{c}\:{are}\:+{ve}\:{real}\:{numbers}. \\ $$$${Then}\:\:\:\:{a}=\frac{{c}}{\mathrm{2}}\:\:\:\:;\:\:\:\:{b}=\frac{{c}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\Rightarrow\:\:\:\frac{{c}}{\mathrm{2}}+\frac{{c}}{\mathrm{2}}+{c}\:=\mathrm{1}\:\:\: \\ $$$${so}\:\:\:\:\:{c}=\frac{\mathrm{1}}{\mathrm{2}}\:,\:\:{a}=\frac{\mathrm{1}}{\mathrm{4}}\:,\:\:\:{b}=\frac{\mathrm{1}}{\mathrm{4}}\: \\ $$$$\Rightarrow\:\:{min}\left(\:\frac{{a}+{b}}{{abc}}\:\right)=\:\frac{\mathrm{1}/\mathrm{2}}{\mathrm{1}/\mathrm{32}}\:=\mathrm{16}\:. \\ $$
Commented by Joel577 last updated on 12/Oct/17
Thank you very much Sir
$${Thank}\:{you}\:{very}\:{much}\:{Sir} \\ $$
Commented by Joel577 last updated on 12/Oct/17
I have heard about inequality AM ≥ GM  is it possible to use that inequality?
$${I}\:{have}\:{heard}\:{about}\:{inequality}\:{AM}\:\geqslant\:{GM} \\ $$$${is}\:{it}\:{possible}\:{to}\:{use}\:{that}\:{inequality}? \\ $$
Answered by ajfour last updated on 12/Oct/17
let  a+b=p  and   f=((a+b)/(abc)) =(p/(abc))   = ((4p)/((4ab)c))   ⇒      f =((4p)/([(a+b)^2 −(a−b)^2 ]c))       or  f=((4p)/([p^2 −(a−b)^2 ]c))  For f to be minimum ,   a=b  ⇒     f=((4p)/(p^2 c)) = (4/(pc))       but a+b+c =1  ⇒   p+c=1  max. of cp results when c=p  ⇒     c=(1/2) and p=(1/2)         So  f =(4/(cp)) =(4/((1/4))) =16 .
$${let}\:\:{a}+{b}={p} \\ $$$${and}\:\:\:{f}=\frac{{a}+{b}}{{abc}}\:=\frac{{p}}{{abc}}\:\:\:=\:\frac{\mathrm{4}{p}}{\left(\mathrm{4}{ab}\right){c}} \\ $$$$\:\Rightarrow\:\:\:\:\:\:{f}\:=\frac{\mathrm{4}{p}}{\left[\left({a}+{b}\right)^{\mathrm{2}} −\left({a}−{b}\right)^{\mathrm{2}} \right]{c}} \\ $$$$\:\:\:\:\:{or}\:\:{f}=\frac{\mathrm{4}{p}}{\left[{p}^{\mathrm{2}} −\left({a}−{b}\right)^{\mathrm{2}} \right]{c}} \\ $$$${For}\:{f}\:{to}\:{be}\:{minimum}\:,\:\:\:{a}={b} \\ $$$$\Rightarrow\:\:\:\:\:{f}=\frac{\mathrm{4}{p}}{{p}^{\mathrm{2}} {c}}\:=\:\frac{\mathrm{4}}{{pc}} \\ $$$$\:\:\:\:\:{but}\:{a}+{b}+{c}\:=\mathrm{1}\:\:\Rightarrow\:\:\:{p}+{c}=\mathrm{1} \\ $$$${max}.\:{of}\:{cp}\:{results}\:{when}\:{c}={p} \\ $$$$\Rightarrow\:\:\:\:\:{c}=\frac{\mathrm{1}}{\mathrm{2}}\:{and}\:{p}=\frac{\mathrm{1}}{\mathrm{2}}\:\: \\ $$$$\:\:\:\:\:{So}\:\:\boldsymbol{{f}}\:=\frac{\mathrm{4}}{\boldsymbol{{cp}}}\:=\frac{\mathrm{4}}{\left(\mathrm{1}/\mathrm{4}\right)}\:=\mathrm{16}\:. \\ $$
Commented by Joel577 last updated on 13/Oct/17
thank you very much
$${thank}\:{you}\:{very}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *