Menu Close

Given-a-b-c-real-number-and-not-equal-to-1-If-log-a-b-log-b-c-log-c-a-0-then-log-a-b-3-log-b-c-3-log-c-a-3-




Question Number 119802 by bemath last updated on 27/Oct/20
Given a,b,c real number and not equal to 1.  If log _a (b)+log _b (c)+log _c (a)=0 then   (log _a (b))^3 +(log _b (c))^3 +(log _c (a))^3 =?
Givena,b,crealnumberandnotequalto1.Ifloga(b)+logb(c)+logc(a)=0then(loga(b))3+(logb(c))3+(logc(a))3=?
Answered by $@y@m last updated on 27/Oct/20
If l+m+n=0  then l^3 +m^3 +n^3 =3lmn  Here l=log _a (b)  m=log _b (c)  n=log _c (a)  ∴ 3lmn=3×log _a (b)×log _b (c)×log _c (a)=3
Ifl+m+n=0thenl3+m3+n3=3lmnHerel=loga(b)m=logb(c)n=logc(a)3lmn=3×loga(b)×logb(c)×logc(a)=3
Answered by Ar Brandon last updated on 27/Oct/20
log_a b+log_b c+log_c a=0  ⇒(log_a b+log_b c)^3 =−(log_c a)^3   ⇒(log_a b)^3 +3(log_a b)^2 (log_b c)  +3(log_a b)(log_b c)^2 +(log_b c)^3 =−(log_c a)^3   ⇒(log_c a)^3 +(log_a b)^3 +(log_b c)^3        =−3(log_a b)(log_b c)[log_a b+log_b c]       =3(log_c a)(log_a b)(log_b c)       =3((1/(log_a c)))(((log_a b)/1))(((log_a c)/(log_a b)))=3
logab+logbc+logca=0(logab+logbc)3=(logca)3(logab)3+3(logab)2(logbc)+3(logab)(logbc)2+(logbc)3=(logca)3(logca)3+(logab)3+(logbc)3=3(logab)(logbc)[logab+logbc]=3(logca)(logab)(logbc)=3(1logac)(logab1)(logaclogab)=3

Leave a Reply

Your email address will not be published. Required fields are marked *