Menu Close

Given-a-b-gt-0-and-n-N-u-n-v-n-gt-0-u-0-a-u-n-1-u-n-v-n-and-v-0-b-v-n-1-1-2-u-n-v-n-Show-that-the-sequences-u-n-and-u-n-are-convergent-and




Question Number 165081 by mathocean1 last updated on 25/Jan/22
Given a; b >0 and ∀ n ∈ N, u_n ;v_n >0 .    { ((u_0 =a)),((u_(n+1) =(√(u_n v_n )))) :} and  { ((v_0 =b)),((v_(n+1) =(1/2)(u_n +v_n ).)) :}  Show that the sequences u_n  and u_n   are convergent and have the same  limit l (l is called the arithmetico−geometric limit).
$${Given}\:{a};\:{b}\:>\mathrm{0}\:{and}\:\forall\:{n}\:\in\:\mathbb{N},\:{u}_{{n}} ;{v}_{{n}} >\mathrm{0}\:. \\ $$$$\:\begin{cases}{{u}_{\mathrm{0}} ={a}}\\{{u}_{{n}+\mathrm{1}} =\sqrt{{u}_{{n}} {v}_{{n}} }}\end{cases}\:{and}\:\begin{cases}{{v}_{\mathrm{0}} ={b}}\\{{v}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left({u}_{{n}} +{v}_{{n}} \right).}\end{cases} \\ $$$${Show}\:{that}\:{the}\:{sequences}\:{u}_{{n}} \:{and}\:{u}_{{n}} \\ $$$${are}\:{convergent}\:{and}\:{have}\:{the}\:{same} \\ $$$${limit}\:{l}\:\left({l}\:{is}\:{called}\:{the}\:{arithmetico}−{geometric}\:{limit}\right). \\ $$
Answered by aleks041103 last updated on 27/Jan/22
we know  (√(ab))≤(1/2)(a+b)  ⇒0<u_1 ≤v_1   also  (√(u_k v_k ))=u_(k+1) ≤v_(k+1) =(1/2)(v_k +u_k )  suppose u_k ≤v_k (true if v_k ,u_k ≥0)  ⇒u_(k+1) = (√(v_k u_k ))≥(√(u_k u_k ))=u_k   ⇒u_(k+1) ≥u_k   ⇒u_k ≥u_1 >0⇒v_k ,u_k >0  ⇒u_k ≤v_k  is true  ⇒u_(k+1) =(√(v_k u_k ))≤(√(v_k v_k ))=v_k   ⇒u_(k+1) ≤v_k   Now  v_(k+1) =(1/2)(v_k +u_k )≥(1/2)(u_k +u_k )=u_k   ⇒v_(k+1) ≥u_k   v_(k+1) =(1/2)(v_k +u_k )≤(1/2)(v_k +v_k )=v_k   ⇒v_(k+1) ≥v_k     From all of this we have:  u_1 ≤u_k ≤u_(k+1) ≤v_k ≤v_1   ⇒u_1 ≤u_k ≤v_1 ⇒{u_n } is bounded.  also u_(k+1) ≥u_k ⇒{u_n } is increasing  ⇒{u_n } converges.  u_1 ≤u_k ≤v_(k+1) ≤v_k ≤v_1   ⇒u_1 ≤u_k ≤v_1 ⇒{v_n } is bounded.  also v_(k+1) ≤v_k ⇒{v_n } is decreasing  ⇒{v_n } converges.    u_(k+1) =(√(u_k v_k ))  ⇒lim_(k→∞) (u_(k+1) /u_k )=(√((lim_(k→∞) v_k )/(lim_(k→∞) u_k )))  since {u_k } converges, lim_(k→∞) (u_(k+1) /u_k )=1  ⇒lim_(k→∞) v_k =lim_(k→∞) u_k =l
$${we}\:{know} \\ $$$$\sqrt{{ab}}\leqslant\frac{\mathrm{1}}{\mathrm{2}}\left({a}+{b}\right) \\ $$$$\Rightarrow\mathrm{0}<{u}_{\mathrm{1}} \leqslant{v}_{\mathrm{1}} \\ $$$${also} \\ $$$$\sqrt{{u}_{{k}} {v}_{{k}} }={u}_{{k}+\mathrm{1}} \leqslant{v}_{{k}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left({v}_{{k}} +{u}_{{k}} \right) \\ $$$${suppose}\:{u}_{{k}} \leqslant{v}_{{k}} \left({true}\:{if}\:{v}_{{k}} ,{u}_{{k}} \geqslant\mathrm{0}\right) \\ $$$$\Rightarrow{u}_{{k}+\mathrm{1}} =\:\sqrt{{v}_{{k}} {u}_{{k}} }\geqslant\sqrt{{u}_{{k}} {u}_{{k}} }={u}_{{k}} \\ $$$$\Rightarrow{u}_{{k}+\mathrm{1}} \geqslant{u}_{{k}} \\ $$$$\Rightarrow{u}_{{k}} \geqslant{u}_{\mathrm{1}} >\mathrm{0}\Rightarrow{v}_{{k}} ,{u}_{{k}} >\mathrm{0} \\ $$$$\Rightarrow{u}_{{k}} \leqslant{v}_{{k}} \:{is}\:{true} \\ $$$$\Rightarrow{u}_{{k}+\mathrm{1}} =\sqrt{{v}_{{k}} {u}_{{k}} }\leqslant\sqrt{{v}_{{k}} {v}_{{k}} }={v}_{{k}} \\ $$$$\Rightarrow{u}_{{k}+\mathrm{1}} \leqslant{v}_{{k}} \\ $$$${Now} \\ $$$${v}_{{k}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left({v}_{{k}} +{u}_{{k}} \right)\geqslant\frac{\mathrm{1}}{\mathrm{2}}\left({u}_{{k}} +{u}_{{k}} \right)={u}_{{k}} \\ $$$$\Rightarrow{v}_{{k}+\mathrm{1}} \geqslant{u}_{{k}} \\ $$$${v}_{{k}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left({v}_{{k}} +{u}_{{k}} \right)\leqslant\frac{\mathrm{1}}{\mathrm{2}}\left({v}_{{k}} +{v}_{{k}} \right)={v}_{{k}} \\ $$$$\Rightarrow{v}_{{k}+\mathrm{1}} \geqslant{v}_{{k}} \\ $$$$ \\ $$$${From}\:{all}\:{of}\:{this}\:{we}\:{have}: \\ $$$${u}_{\mathrm{1}} \leqslant{u}_{{k}} \leqslant{u}_{{k}+\mathrm{1}} \leqslant{v}_{{k}} \leqslant{v}_{\mathrm{1}} \\ $$$$\Rightarrow{u}_{\mathrm{1}} \leqslant{u}_{{k}} \leqslant{v}_{\mathrm{1}} \Rightarrow\left\{{u}_{{n}} \right\}\:{is}\:{bounded}. \\ $$$${also}\:{u}_{{k}+\mathrm{1}} \geqslant{u}_{{k}} \Rightarrow\left\{{u}_{{n}} \right\}\:{is}\:{increasing} \\ $$$$\Rightarrow\left\{{u}_{{n}} \right\}\:{converges}. \\ $$$${u}_{\mathrm{1}} \leqslant{u}_{{k}} \leqslant{v}_{{k}+\mathrm{1}} \leqslant{v}_{{k}} \leqslant{v}_{\mathrm{1}} \\ $$$$\Rightarrow{u}_{\mathrm{1}} \leqslant{u}_{{k}} \leqslant{v}_{\mathrm{1}} \Rightarrow\left\{{v}_{{n}} \right\}\:{is}\:{bounded}. \\ $$$${also}\:{v}_{{k}+\mathrm{1}} \leqslant{v}_{{k}} \Rightarrow\left\{{v}_{{n}} \right\}\:{is}\:{decreasing} \\ $$$$\Rightarrow\left\{{v}_{{n}} \right\}\:{converges}. \\ $$$$ \\ $$$${u}_{{k}+\mathrm{1}} =\sqrt{{u}_{{k}} {v}_{{k}} } \\ $$$$\Rightarrow\underset{{k}\rightarrow\infty} {{lim}}\frac{{u}_{{k}+\mathrm{1}} }{{u}_{{k}} }=\sqrt{\frac{\underset{{k}\rightarrow\infty} {{lim}v}_{{k}} }{\underset{{k}\rightarrow\infty} {{lim}u}_{{k}} }} \\ $$$${since}\:\left\{{u}_{{k}} \right\}\:{converges},\:\underset{{k}\rightarrow\infty} {{lim}}\frac{{u}_{{k}+\mathrm{1}} }{{u}_{{k}} }=\mathrm{1} \\ $$$$\Rightarrow\underset{{k}\rightarrow\infty} {{lim}v}_{{k}} =\underset{{k}\rightarrow\infty} {{lim}u}_{{k}} ={l} \\ $$
Commented by mathocean1 last updated on 27/Jan/22
thank you very much.
$${thank}\:{you}\:{very}\:{much}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *