Menu Close

Given-a-function-f-which-is-periodic-of-period-2-defined-by-f-x-3x-2-4-if-0-x-lt-3-x-3-if-3-x-lt-6-1-State-in-a-similar-manner-f-x-2-Check-if-f-is-continuous-3




Question Number 107452 by Rio Michael last updated on 10/Aug/20
Given a function f which is periodic of period 2 defined by   f(x) =  { ((3x^2 −4 , if 0 ≤ x < 3)),((x−3, if  3 ≤ x < 6)) :}  (1) State in a similar manner f ′(x).  (2) Check if f is continuous.  (3) find f (7) and skech the curve y = f(x).
$$\mathrm{Given}\:\mathrm{a}\:\mathrm{function}\:{f}\:\mathrm{which}\:\mathrm{is}\:\mathrm{periodic}\:\mathrm{of}\:\mathrm{period}\:\mathrm{2}\:\mathrm{defined}\:\mathrm{by} \\ $$$$\:{f}\left({x}\right)\:=\:\begin{cases}{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}\:,\:\mathrm{if}\:\mathrm{0}\:\leqslant\:{x}\:<\:\mathrm{3}}\\{{x}−\mathrm{3},\:\mathrm{if}\:\:\mathrm{3}\:\leqslant\:{x}\:<\:\mathrm{6}}\end{cases} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{State}\:\mathrm{in}\:\mathrm{a}\:\mathrm{similar}\:\mathrm{manner}\:{f}\:'\left({x}\right). \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Check}\:\mathrm{if}\:{f}\:\mathrm{is}\:\mathrm{continuous}. \\ $$$$\left(\mathrm{3}\right)\:\mathrm{find}\:{f}\:\left(\mathrm{7}\right)\:\mathrm{and}\:\mathrm{skech}\:\mathrm{the}\:\mathrm{curve}\:{y}\:=\:{f}\left({x}\right). \\ $$
Answered by 1549442205PVT last updated on 11/Aug/20
The periodic function f(x) of period T   is a function that satisfy  f(x)=f(x+T)∀x∈D_(f  ) (D_f −the defined   domain of f(x)).The above function  has no that property sir?
$$\mathrm{The}\:\mathrm{periodic}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{of}\:\mathrm{period}\:\mathrm{T}\: \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{function}\:\mathrm{that}\:\mathrm{satisfy} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{f}\left(\mathrm{x}+\mathrm{T}\right)\forall\mathrm{x}\in\mathrm{D}_{\mathrm{f}\:\:} \left(\mathrm{D}_{\mathrm{f}} −\mathrm{the}\:\mathrm{defined}\:\right. \\ $$$$\left.\mathrm{domain}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{x}\right)\right).\mathrm{The}\:\mathrm{above}\:\mathrm{function} \\ $$$$\mathrm{has}\:\mathrm{no}\:\mathrm{that}\:\mathrm{property}\:\mathrm{sir}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *