Menu Close

Given-a-function-f-x-x-2-1-x-2-4x-4-x-where-x-gt-0-find-the-minimum-value-of-f-x-




Question Number 114181 by bemath last updated on 17/Sep/20
Given a function   f(x) = x^2 +(1/x^2 )+4x+(4/x) ; where x>0.  find the minimum value of f(x)
Givenafunctionf(x)=x2+1x2+4x+4x;wherex>0.findtheminimumvalueoff(x)
Answered by bobhans last updated on 17/Sep/20
recall p+(1/p) ≥ 2 ; p > 0  now f(x)= (x^2 +(1/x^2 ))+4(x+(1/x))  ⇒f(x)= (x+(1/x))^2 −2+4(x+(1/x))  f(x)∣_(minimum)  = 2^2 −2+4.2 = 10.
recallp+1p2;p>0nowf(x)=(x2+1x2)+4(x+1x)f(x)=(x+1x)22+4(x+1x)f(x)minimum=222+4.2=10.
Answered by mathmax by abdo last updated on 17/Sep/20
x^(2 )  +(1/x^2 ) ≥2  and x+(1/x) ≥2 ⇒4(x+(1/x))≥8 ⇒x^2  +(1/x^2 ) +4(x+(1/x))≥10 ⇒  min_R^+  f(x) =10
x2+1x22andx+1x24(x+1x)8x2+1x2+4(x+1x)10minR+f(x)=10
Answered by 1549442205PVT last updated on 18/Sep/20
f(x)=x^2 +(1/x^2 )+4(x+(1/x))  =(x−(1/x))^2 +4((√x)−(1/( (√x))))^2 +10≥10  The equality ocurrs if and only if  x=1.Hence,f(x)_(min) =10 when x=2
f(x)=x2+1x2+4(x+1x)=(x1x)2+4(x1x)2+1010Theequalityocurrsifandonlyifx=1.Hence,f(x)min=10whenx=2

Leave a Reply

Your email address will not be published. Required fields are marked *