Menu Close

Given-a-function-H-x-sin-x-cos-x-2-cos-x-with-x-0-2pi-find-H-x-max-and-H-x-min-




Question Number 94125 by i jagooll last updated on 17/May/20
Given a function   H(x) = ∣sin x+cos x∣ + (√2) cos x  with x ∈ [ 0, 2π ]   find H(x)_(max)  and H(x)_(min)
$$\mathrm{Given}\:\mathrm{a}\:\mathrm{function}\: \\ $$$$\mathrm{H}\left(\mathrm{x}\right)\:=\:\mid\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}\mid\:+\:\sqrt{\mathrm{2}}\:\mathrm{cos}\:\mathrm{x} \\ $$$$\mathrm{with}\:\mathrm{x}\:\in\:\left[\:\mathrm{0},\:\mathrm{2}\pi\:\right]\: \\ $$$$\mathrm{find}\:\mathrm{H}\left(\mathrm{x}\right)_{\mathrm{max}} \:\mathrm{and}\:\mathrm{H}\left(\mathrm{x}\right)_{\mathrm{min}} \\ $$
Answered by john santu last updated on 17/May/20
H(x)_(max)  = (√(4+2(√2))) ,when x = ((3π)/8)  H(x)_(min)  = 1−(√2) , when x = π
$$\mathrm{H}\left(\mathrm{x}\right)_{\mathrm{max}} \:=\:\sqrt{\mathrm{4}+\mathrm{2}\sqrt{\mathrm{2}}}\:,\mathrm{when}\:\mathrm{x}\:=\:\frac{\mathrm{3}\pi}{\mathrm{8}} \\ $$$$\mathrm{H}\left(\mathrm{x}\right)_{\mathrm{min}} \:=\:\mathrm{1}−\sqrt{\mathrm{2}}\:,\:\mathrm{when}\:\mathrm{x}\:=\:\pi \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *