Menu Close

Given-a-function-y-f-x-where-f-1-x-5-x-5-8-x-5-Find-slope-of-the-curve-y-f-x-at-x-1-




Question Number 124007 by liberty last updated on 30/Nov/20
 Given a function y=f(x) where f^(−1) (((x+5)/(x−5)))=(8/(x+5))  Find slope of the curve y=f(x) at x=1 .
Givenafunctiony=f(x)wheref1(x+5x5)=8x+5Findslopeofthecurvey=f(x)atx=1.
Answered by john_santu last updated on 30/Nov/20
f^(−1) (((x+5)/(x−5)))=(8/(x+5)) ⇔ f((8/(x+5)))=((x+5)/(x−5))  differentiating both side give  −(8/((x+5)^2 )) f ′((8/(x+5))) = −((10)/((x−5)^2 ))  put x=3 ⇒ −(8/(64)) f ′(1) = −((10)/4)  ⇒ f ′(1) = ((10)/4)×(8/1) = 20.
f1(x+5x5)=8x+5f(8x+5)=x+5x5differentiatingbothsidegive8(x+5)2f(8x+5)=10(x5)2putx=3864f(1)=104f(1)=104×81=20.
Answered by mathmax by abdo last updated on 30/Nov/20
f^(−1) (((x+5)/(x−5)))=(8/(x+5)) ⇒f((8/(x+5)))=((x+5)/(x−5))  let (8/(x+5))=t ⇒tx+5t=8 ⇒  tx=8−5t ⇒x=((8−5t)/t) ⇒f(t)=((((8−5t)/t)+5)/(((8−5t)/t)−5))=((8t)/(8−10t)) =((4t)/(4−5t))  we have f(t)=((4t)/(4−5t)) ⇒f^′ (t)=((4(4−5t)−4t(−5))/((4−5t)^2 ))=((16−20t+20t)/((5t−4)^2 ))  ⇒f^′ (t)=((16)/((5t−4)^2 )) ⇒f^′ (1) =16
f1(x+5x5)=8x+5f(8x+5)=x+5x5let8x+5=ttx+5t=8tx=85tx=85ttf(t)=85tt+585tt5=8t810t=4t45twehavef(t)=4t45tf(t)=4(45t)4t(5)(45t)2=1620t+20t(5t4)2f(t)=16(5t4)2f(1)=16
Commented by liberty last updated on 30/Nov/20
not correct.  f(t)=((((8−5t)/t)+5)/(((8−5t)/t)−5)) = ((8−5t+5t)/(8−5t−5t))=(8/(8−10t))=(4/(4−5t))  sir=
notcorrect.f(t)=85tt+585tt5=85t+5t85t5t=8810t=445tsir=
Commented by Bird last updated on 30/Nov/20
sorry f(t)=(8/(8−10t)) =(4/(4−5t)) ⇒  f^′ (t)=4×(5/((4−5t)^2 ))=((20)/((4−5t)^2 )) ⇒  slope =f^′ (1)=20
sorryf(t)=8810t=445tf(t)=4×5(45t)2=20(45t)2slope=f(1)=20

Leave a Reply

Your email address will not be published. Required fields are marked *