Menu Close

Given-a-gt-0-b-gt-0-c-gt-2-a-b-1-find-the-minimum-value-of-3ac-b-c-ab-6-c-2-




Question Number 179090 by CrispyXYZ last updated on 24/Oct/22
Given a>0, b>0, c>2, a+b=1.  find the minimum value of  ((3ac)/b)+(c/(ab))+(6/(c−2)).
Givena>0,b>0,c>2,a+b=1.findtheminimumvalueof3acb+cab+6c2.
Commented by Frix last updated on 24/Oct/22
24
24
Answered by MJS_new last updated on 24/Oct/22
a>0∧b>0∧a+b=1 ⇒ 0<a<1∧0<b<1  ⇒ let a=sin^2  x ∧ b=cos^2  x        I prefer x=arctan t ⇒ a=(t^2 /(t^2 +1))∧b=(1/(t^2 +1))  c>2 ⇒ c=2+u^2     ⇒    ((3ac)/b)+(c/(ab))+(6/(c−2))=  =3t^2 (u^2 +2)+(((t^2 +1)^2 (u^2 +2))/t^2 )+(6/u^2 )=f(t, u)  (df/dt)=0  6(u^2 +2)t+((2(t^4 −1)(u^2 +2))/t^3 )=0  2(4t^4 −1)(u^2 +2)=0  t=±((√2)/2)  f(±((√2)/2), u)=((3(u^2 +2))/2)+((9(u^2 +2))/2)+(6/u^2 )=((6(u^2 +1))/u^2 )  (df/du)=0  ((12(u^4 −1))/u^3 )=0  u=±1  f(±((√2)/2), ±1)=24  with a=(1/3)∧b=(2/3)∧c=3
a>0b>0a+b=10<a<10<b<1leta=sin2xb=cos2xIpreferx=arctanta=t2t2+1b=1t2+1c>2c=2+u23acb+cab+6c2==3t2(u2+2)+(t2+1)2(u2+2)t2+6u2=f(t,u)dfdt=06(u2+2)t+2(t41)(u2+2)t3=02(4t41)(u2+2)=0t=±22f(±22,u)=3(u2+2)2+9(u2+2)2+6u2=6(u2+1)u2dfdu=012(u41)u3=0u=±1f(±22,±1)=24witha=13b=23c=3

Leave a Reply

Your email address will not be published. Required fields are marked *