Menu Close

Given-a-matrix-A-1-3-2-0-1-4-2-3-2-and-A-1-1-10-kA-9I-A-2-find-k-




Question Number 118231 by bemath last updated on 16/Oct/20
Given a matrix A=  (((−1      3     2)),((   0       1     4)),((−2     3     2)) )  and A^(−1) = (1/(10))(kA+9I−A^2 ).  find k.
GivenamatrixA=(132014232)andA1=110(kA+9IA2).findk.
Answered by bobhans last updated on 16/Oct/20
⇒10A^(−1) =kA+9I−A^2   ⇒10A^(−1) .A=kA^2 +9A−A^3   ⇒A^3 −kA^2 −9A+10I=0  it must be Σ coefficient = 0  ⇒1−k−9+10=0⇒k=2  checking  ⇒A^3 −2A^2 −9A+10I  ⇒A(A^2 −2A−9I)+10I  ⇒A(A(A−2I)−9I)+10I    A−2I= (((−1     3        2)),((    0      1        4)),((−2     3        2)) ) − (((2    0   0)),((0    2   0)),((0    0    2)) )                 =  (((−3   3     2)),((    0 −1   4 )),((−2    3     0)) )  A(A−2I) =  (((−1      3       2)),((    0       1       4)),((−2     3       2)) )  (((−3     3     2)),((   0  −1     4)),((−2    3      0)) )              =  (((−1     0      10)),((−8    11     4)),((   2   −3      8)) )  next..
10A1=kA+9IA210A1.A=kA2+9AA3A3kA29A+10I=0itmustbeΣcoefficient=01k9+10=0k=2checkingA32A29A+10IA(A22A9I)+10IA(A(A2I)9I)+10IA2I=(132014232)(200020002)=(332014230)A(A2I)=(132014232)(332014230)=(10108114238)next..

Leave a Reply

Your email address will not be published. Required fields are marked *