Menu Close

Given-a-matrix-A-a-b-c-d-satisfies-the-equation-A-2-A-7I-0-where-I-1-0-0-1-Find-the-value-of-trace-of-A-




Question Number 114554 by bemath last updated on 19/Sep/20
Given a matrix A =  (((a   b)),((c   d)) ) satisfies  the equation A^2 +λA+7I = 0  where I= (((1   0)),((0   1)) ) . Find the value of   trace of A
GivenamatrixA=(abcd)satisfiestheequationA2+λA+7I=0whereI=(1001).FindthevalueoftraceofA
Answered by bobhans last updated on 19/Sep/20
A^2 = (((a    b)),((c    d)) ) (((a    b)),((c     d)) )= (((a^2 +bc    ab+bd)),((ac+cd   bc+d^2 )) )  λA= (((aλ    bλ)),((cλ    dλ)) ) ⇒A^2 +λA= (((−7    0)),((   0   −7)) )  ⇒ (((a^2 +bc+λa    ab+bd+bλ)),((ac+cd+cλ   bc+d^2 +dλ)) )= (((−7      0)),((   0    −7)) )  → c(a+d+λ) = 0 ; a+d=−λ  →b(a+d+λ)=0 ; a+d =−λ  ⇒a^2 +bc+λa=−7  ⇒a^2 +bc+a(−a−d)=−7 ; bc−ad=−7  ad−bc = 7 ; det(A)=7  trace (A)=−λ
A2=(abcd)(abcd)=(a2+bcab+bdac+cdbc+d2)λA=(aλbλcλdλ)A2+λA=(7007)(a2+bc+λaab+bd+bλac+cd+cλbc+d2+dλ)=(7007)c(a+d+λ)=0;a+d=λb(a+d+λ)=0;a+d=λa2+bc+λa=7a2+bc+a(ad)=7;bcad=7adbc=7;det(A)=7trace(A)=λ

Leave a Reply

Your email address will not be published. Required fields are marked *