Menu Close

Given-a-n-1-1-1-n-2-1-1-1-n-2-The-value-of-n-1-2015-4-a-n-is-




Question Number 115897 by Joel574 last updated on 29/Sep/20
Given  a_n  = (√(1 + (1 − (1/n))^2 )) + (√(1 + (1 + (1/n))^2 ))  The value of Σ_(n=1) ^(2015) ((4/a_n )) is ...
Givenan=1+(11n)2+1+(1+1n)2Thevalueof2015n=1(4an)is
Commented by Joel574 last updated on 29/Sep/20
(a) (√(2015^2  + 2016^2 ))  (b) (√(2015^2  + 2016^2 )) + 1  (c) (√(2014^2  + 2015^2 )) + 1  (d) (√(2015^2  + 2016^2 )) − 1  (e) (√(2014^2  + 2015^2 )) − 1
(a)20152+20162(b)20152+20162+1(c)20142+20152+1(d)20152+201621(e)20142+201521
Answered by mindispower last updated on 29/Sep/20
a_n =(1/n)((√(2n^2 −2n+1))+(√(2n^2 +2n+1)))  (1/a_n )=(n/( (√(2n^2 +2n+1))+(√(2n^2 −2n+1))))  =(n/(4n))((√(2n^2 +2n+1))−(√(2n^2 −2n+1)))  =(1/4)((√(2n^2 +2n+1))−(√(2n^2 −2n+1)))  u_n =(√(2n^2 −2n+1))  u_(n+1) =(√(2(n+1)^2 −2(n+1)+1))  =(√(2n^2 +2n+1))  (1/(an))=(1/4)(U_(n+1) −U_n )  Σ(1/a_n )=(1/4)Σ(u_(n+1) −u_n )  Σ_(n≤2015) (4/a_n )=U_(2016) −u_1   u_1 =1  u_n =(√((n+1)^2 +n^2 ))  u_(2016) =(√(2017^2 +2016^2 ))  ⇒Σ(4/a_n )=(√(2017^2 +2016^2 ))−1
an=1n(2n22n+1+2n2+2n+1)1an=n2n2+2n+1+2n22n+1=n4n(2n2+2n+12n22n+1)=14(2n2+2n+12n22n+1)un=2n22n+1un+1=2(n+1)22(n+1)+1=2n2+2n+11an=14(Un+1Un)Σ1an=14Σ(un+1un)n20154an=U2016u1u1=1un=(n+1)2+n2u2016=20172+20162Σ4an=20172+201621
Commented by Joel574 last updated on 30/Sep/20
Thank you very much
Thankyouverymuch
Answered by Dwaipayan Shikari last updated on 29/Sep/20
Σ_(n=1) ^n ((4/a_n ))=Σ_(n=1) ^n (4/( (√(1+(1−(1/n))^2 ))+(√(1+(1+(1/n))^2 ))))  Σ_(n=1) ^n 4(((√(1+(1−(1/n))^2 ))−(√(1+(1+(1/n))^2 )))/(−(4/n)))  Σ_(n=1) ^n n((√(1+(1+(1/n))^2 ))−(√(1+(1−(1/n))^2 )) )  Σ_(n=1) ^n (√(2n^2 +2n+1))−(√(2n^2 −2n+1))  =(√5)−(√1)+(√(13))−(√5)+...+(√(n^2 +(n+1)^2 ))−(√((n−1)^2 +n^2 ))  =(√(n^2 +(n+1)^2 ))−1
nn=1(4an)=nn=141+(11n)2+1+(1+1n)2nn=141+(11n)21+(1+1n)24nnn=1n(1+(1+1n)21+(11n)2)nn=12n2+2n+12n22n+1=51+135++n2+(n+1)2(n1)2+n2=n2+(n+1)21
Commented by Joel574 last updated on 30/Sep/20
Thank you very much
Thankyouverymuch

Leave a Reply

Your email address will not be published. Required fields are marked *