Menu Close

Given-a-n-1-24-1-n-1-n-then-the-value-of-a-1-log-a-bc-1-1-log-b-ac-1-1-log-c-ab-1-




Question Number 103622 by bobhans last updated on 16/Jul/20
Given a = Σ_(n=1) ^(24) (1/( (√(n+1))+(√n))) then the value of  a + (1/(log _a (bc)+1)) + (1/(log _b (ac)+1)) +  (1/(log _c (ab)+1)) = ?
Givena=24n=11n+1+nthenthevalueofa+1loga(bc)+1+1logb(ac)+1+1logc(ab)+1=?
Answered by OlafThorendsen last updated on 16/Jul/20
(1/( (√(n+1))+(√n))) = (√(n+1))−(√n)  Then a = Σ_(n=1) ^(24) ((√(n+1))−(√n)) = (√(25)) = 5  5+(1/(log_5 (bc)+1))+(1/(log_b (5c)+1))+(1/(log_c (5b)+1))  5+(1/(((ln(bc))/(ln5))+1))+(1/(((ln(5c))/(lnb))+1))+(1/(((ln(5b))/(lnc))+1))  5+((ln5)/(ln(bc)+ln5))+((lnb)/(ln(5c)+lnb))+((lnc)/(ln(5b)+lnc))  5+((ln5)/(ln(5bc)))+((lnb)/(ln(5bc)))+((lnc)/(ln(5bc)))  5+((ln(5bc))/(ln(5bc))) = 5+1 = 6
1n+1+n=n+1nThena=24n=1(n+1n)=25=55+1log5(bc)+1+1logb(5c)+1+1logc(5b)+15+1ln(bc)ln5+1+1ln(5c)lnb+1+1ln(5b)lnc+15+ln5ln(bc)+ln5+lnbln(5c)+lnb+lncln(5b)+lnc5+ln5ln(5bc)+lnbln(5bc)+lncln(5bc)5+ln(5bc)ln(5bc)=5+1=6
Commented by bobhans last updated on 16/Jul/20
cooll
cooll
Commented by bemath last updated on 16/Jul/20
wrong sir Σ_(n=1) ^(24)  (√(n+1))−(√n) = 4
wrongsir24n=1n+1n=4
Commented by OlafThorendsen last updated on 16/Jul/20
exact sir. you are right.
exactsir.youareright.
Answered by bemath last updated on 16/Jul/20
a+(1/(log _a (abc))) + (1/(log _b (abc))) +(1/(log _c (abc)))=  a+ log _(abc) (abc) = a+1   where a = Σ_(n=1) ^(24) (√(n+1)) −(√n) = 5−1 = 4  then ⇔ a+1 = 4+1 = 5
a+1loga(abc)+1logb(abc)+1logc(abc)=a+logabc(abc)=a+1wherea=24n=1n+1n=51=4thena+1=4+1=5

Leave a Reply

Your email address will not be published. Required fields are marked *