Menu Close

Given-A-p-2-q-2-r-2-2-pq-2-pr-2-qr-2-B-q-2-pr-p-2-q-2-r-2-If-p-q-r-0-then-A-2-4B-




Question Number 192440 by cortano12 last updated on 18/May/23
    Given  { ((A=(((p^2 +q^2 +r^2 )^2 )/((pq)^2 +(pr)^2 +(qr)^2 )))),((B=((q^2 −pr)/(p^2 +q^2 +r^2 )) )) :}         If p+q+r=0 then A^2 −4B=?
$$\:\:\:\:\mathrm{Given}\:\begin{cases}{\mathrm{A}=\frac{\left(\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} \right)^{\mathrm{2}} }{\left(\mathrm{pq}\right)^{\mathrm{2}} +\left(\mathrm{pr}\right)^{\mathrm{2}} +\left(\mathrm{qr}\right)^{\mathrm{2}} }}\\{\mathrm{B}=\frac{\mathrm{q}^{\mathrm{2}} −\mathrm{pr}}{\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} }\:}\end{cases}\:\:\:\:\:\: \\ $$$$\:\mathrm{If}\:\mathrm{p}+\mathrm{q}+\mathrm{r}=\mathrm{0}\:\mathrm{then}\:\mathrm{A}^{\mathrm{2}} −\mathrm{4B}=? \\ $$$$ \\ $$
Answered by Frix last updated on 18/May/23
r=−(p+q) ⇒ A=4∧B=(1/2)  A^2 −4B=14
$${r}=−\left({p}+{q}\right)\:\Rightarrow\:{A}=\mathrm{4}\wedge{B}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${A}^{\mathrm{2}} −\mathrm{4}{B}=\mathrm{14} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *